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Implementing self-reproducing artificial organisms with Ada
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Artificial Life techniques have a potential use in ecological models, but they have
not yet been programmed in Ada. Ada tasks provide a powerful means to express
the behavior of self-reproductive autonomous individuals. This article shows how
artificial organisms with a complicated reproduction (alternation of sexual and
asexual generations) have been implemented in an ecological simulation software
written in Ada.

Introduction

Artificial Life (ALife) techniques, the representation of biological cells or organisms by computer
programs, are beginning to be used by biologists and ecologists as a modeling tool [8). When the
entities simulated in software are organisms, Alife models offer an alternative to the classical
study of populations with mathematical equations.

Alife programming is done mainly with Lisp dialects — an understandable choice, because Lisp
leads naturally to "evolutionary programming” (where the source code itself undergoes mutations
and substitutions while running). Concurrency in Alife software is mostly considered in terms of
highly parallel computers running small identical pieces of code in multiple nodes.

Another recent trend in ecology is the use of object-oriented programming [3], using Smalitalk or
C++. In ecological simulations, concurrency is found in event-driven Smalltalk programs.

The exploratory nature of ecological modeling may explain why Ada is not usually chosen for an
activity rather related to prototyping. Also the steep learning curve for mastering Ada is not
appealing to biologists.

However, Ada provides many features favoring object-oriented (or more exactly for Ada83, object-
based) programming, as well as concurrent object behavior. Murray [7] has advocated the use of
Ada tasks to represent ecological processes. But tasks constitute only an aspect (the dynamic one)
of an ecological model. Software engineering methods devised for dealing with complex software
systems may be useful to understand ecosystems, which are another kind of complex systems.

An Ada object-based design of a small ecosystem simulation may be found in a companion
paper [5]; this software, named CALIFE (for Computational Artificial LIFE) is designed along the
HOOD (Hierarchical Object-Oriented Design) methodology [4]. The present article explains how
the artificial organisms constituting one of the "objects” in CALIFE (the biological population under
study) are implemented in Ada.

For readers not familiar with biology, however, a short description of the relevant features of these
organisms is necessary.



1. The real organisms

The individuals represented in CALIFE are gelatinous planktonic animals a few cm long, members
of the class of Tunicates (see for example [1]). They play an important ecological role because when
conditions are favorable they reproduce very rapidly, and can "bloom" forming swarms covering
thousands of km? [6]. This high reproductive rate is made possible through a budding phase in
their life cycle, in which each individual may produce (asexually) more than 100 individuals. These
asexually produced individuals remain attached to one another, forming a "chain". In biclogical
terms, the oozooid (individual issued from the egg) gives birth to a chain of blastozooids
(individuals arising from budding — also named aggregates). When the chain eventually breaks
down, each blastozooid, when fecundated, produces an egg, which yields an oozooid. An o0ozooid
may produce two or three generations of chains. The fecundation of an aggregate leads to only one
cozooid.

This complicated mode of reproduction was one of the incentives of the CALIFE implementation
in Ada: it is an example of the power and expressiveness of the language.

2. Ada implementation of a Tunicate
2.1 Biological structure

In the CALIFE object-based design, the object Tunicates represents a population of organisms
issued from one initial individual. The modeler (the user of the software) only sets the stage for
the simulation and observes what is happening. There is no user interaction with the organisms
after the initial parameters values are read. This point has profound implications for the design.

In an Alife representation, Tunicates should be modeled as self-reproducing entities with
concurrent individual behaviors. Each individual should have local states, and should maintain
a local clock. An artificial Tunicate should exist in two forms: oozooid and chain, with o0ozooids
producing chains, and each individual in the chain producing an oozooid.

For simplicity a chain is represented in the software by one "super-individual”. This is not an
important bias, because each individual in a chain is a clone; all individuals in a chain behave
identically — move together, breath the same, etc. Moreover, with this convention a chain occupies
just one position in "space”. For modeling purposes, the physiology of a chain is simply the sum
of the individual physiologies of its constituents. In the following presentation the term zooid will
refer to any "individual”, whether an 00zo0id or a chain.

The preceding specifications call for a Tunicates package, with an abstract data type Zooid, and
a visible procedure Create (taking a parameter of type Zooid). The private type Zooid is an access
type to a variant record structure, Zooid_Pattern. The record discriminant governs the fields
characteristic of either an oozooid or a chain. The fixed fields contain information such as the
individual birth date, or current position, swimming direction, etc.

2.2 Behavior

The concurrent behavior of an individual is naturally captured by a task. Each individual has
a field named Action in the Zooid_Pattern record pointing to a task type Vital_Process. The task
has an entry Start (with an in parameter of type Zooid). The main internal loop inside the task
periodically executes a delay statement. The loop is entered at birth (just after the entry Start is
accepted); age increments accumulate until a Longevity parameter is reached (unless some external



event causes the death of the individual). The behavioral events (moving, feeding, reproducing, etc.)
take place during each main loop iteration.

record task
Zoold_Pattern Vital_Process
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Figure 1: Representation of a Tunicate generation

All these events need to refer to the Zooid_Pattern record structure: moving requires updating the
current position, feeding the current amount of reserves, and so on. This is done in the task with
an access value to the record structure. This access value is stored in a local variable called Myself
(Fig. 1). To make the first individual, the Create procedure allocates a Zooid_Pattern record; the
access value returned by the allocator provides an access to the first individual. The record is
initialized with a qualified aggregate, in which the Action field is initialized by allocating a task
of a Vital_Process task type. The task begins immediately executing but waits at an initial
rendezvous at its Start entry. A copy of the access value designating the first individual is then
passed during the rendezvous to the Myself local variable. The task may thus refer to the
Zooid_Pattern record. :

2.2.1 Reproduction

Reproduction constitutes a slightly more difficult problem: when maturation time is
elapsed, the first individual (arbitrarily chosen to be an 00zooid) should spawn a new individual
(this time a chain). When the chain is mature, it should spawn as many ocozooids as there are
individuals in the chain, and so on.

For reasons which will be explained later, each "child" is connected to its "parent” with an access
value. The Zooid_Pattern variant "Chain" has an Aggregates field, which contains an array of Zooid
access values indexed by the number of individuals (aggregates) in a chain. An array of access
values is not necessary for the variant "Oozooid" (which produces only one chain), but as each
oozooid may reproduce several times, it is necessary to connect the different generations of chains
to their parent oozooid. So in the variant "Oozooid" there is also an array of Zooid access values,
this time indexed by the number of generations.

The reproduction of an artificial Tunicate involves 3 major steps.

(1) The parent task allocates from the memory a Zooid_Pattern record, of the opposite variant. The
Action field of the child is initialized by assigning to it the access value resulting from an allocator
for a Vital_Process task type; this has the effect of connecting the task of the child to the parent
Action field;



(2) The parent connects the appropriate location of its arfay of Zooid access values to the child

record;
(3) The parent calls the child task entry Start, passing as a parameter the address of the record

it has allocated for the child.

gen. 2 %

Figure 2: The linked list of zooids

The whole reproductive process yields a multibranched linked list (Fig. 2). After the 3 above steps,
the newly born tunicate is autonomous. It "lives" concurrently with the other tunicates. The new
individual is created at the same place, and with the same swimming direction than the
parent; this position is of course already occupied, but it is replaced with the nearest free position
found by an algorithm similar to the one used for moves.

2.2.2 Motion

In CALIFE, space is represented by a Space object, containing a two-dimensional grid of
positions. The real space where the simulation takes place is mapped to this grid. A zooid at a
position (X,Y) is displayed on the computer screen by sending a constant of type Code to the (X,Y)
screen coordinates. In text mode, a zooid is displayed with a character; an attribute determines its
foreground and background colors. In 80 x 25 text mode, Codes can be directly mapped to the PC
video memory; Codes are then records featuring an ASCII character and a byte attribute. In
graphic mode an individual could be represented with one or more pixels, depending on the
resolution and the grid size. Codes are then implemented as integers corresponding to a pattern
of bits corresponding to foreground and background values; they should be displayed using a
procedure interfaced with a graphic library, or with an assembly routine addressing the video
system. Each time an organism moves, its previous position is cleared and a Code, corresponding
to the organism’s identity and state (i.e. a Live_Oozooid, a Chain_Cadaver), is written to the new
location. ‘

The screen motions roughly mimic the displacements of real tunicates, which swim by pulsations
of their entire cylindrical body. The artificial individuals move in one of 8 directions. At each loop
cycle, each individual moves to the next available grid position. If this position is occupied, the
swimming direction is reversed (a 180° change), as do real tunicates when they hit an obstacle. To
avoid being stuck in corners, after 8 moves the direction is changed by 1/8. This has the additional



advantage that, if there is no obstacle, the individual swims in large circles, like a real tunicate.
A rather complicated algorithm is used to find the nearest available position when the next
position is occupied by another individual, or on a screen edge. If the algorithm fails to find a
position not occupied by a zooid, no move occurs; a free position usually becomes available at a
later cycle (if after 10 cycles there is still no free position, the exception Over_Population is raised;
this kills the task).

As individuals move concurrently and share a single display, there is of course a mutual exclusion
problem. Accessing the screen through a controller task does not solve it completely, because when
several hundred of individuals are moving, the controller becomes a bottleneck, and the program
is eventually totally frozen. In a previous version of the software, the controller was suppressed.
This had the slight inconvenience that, from time to time, two individuals occupy the same posi-
tion; the second arrival does not search for a free position, but is displayed over the first. However,
as each individual records in its Position field its true position, as soon as their paths diverge the
positions of the two individuals are again distinct.

This problem is now solved by using an array of controller tasks, each in charge of a small portion
of the grid. A zooid wanting to move determines its next potential location (X,Y) from its current
position and direction. It then addresses a request to a Space_CTRL object. This object determines
which controller in the array is in charge of the region containing (X,Y), and forwards the request
to it. If the controller determines, in mutual exclusion, that the location (X,Y) is empty, it updates
the grid in the Space object. If the (X,Y) location is occupied by another zooid, another controller
request is made for a position at 180° from the current zooid direction. For births, especially when
numerous oozooids arise from a chain, a more "compact” algorithm is used to find an empty
position close to the parent: instead of exploring only the 8 directions around the requested
position, the area is searched for consecutive positions in a spiral manner.

If every zooid moves or reproduces at fixed points in the internal loop of its task, this would result
in quasi-synchronous moves of all the zooids, giving an unnatural jerky aspect to the simulation.
Moreover, if all moves occur (quasi-)simultaneously, the controller tasks are likely to be over-
whelmed when the zooids are numerous. To smooth the arrivals of controller requests, a very small
random lag is introduced before each reproduction (sexual and asexual). This is done with a delay
statement taking for expression a random function returning a duration between 0 and 200
milliseconds. This delay has the advantage of adding a supplementary synchronization point in
each zooid task.

2.2.3 Feeding

Food is a spatialized resource, modeled in CALIFE by food objects. The body of a food object
contains an (X,Y) array, whose locations correspond to those in the Space object array. Different
kinds of food are represented by instantiations of a generic package, Food. This package makes
visible a function, Inquire_Food, returning the amount of food present at a given location, and a
procedure Update_Food, which, given a certain Amount_Requested, returns Amount_Delivered,
updating the amount present at the given location. Feeding is done in mutual exclusion, when the
requested destination in a move contains a non-null amount of food. Ingestion of food results in
an increase of the reserves of a zooid (the amount of reserves is kept in a local variable). To help
to visualize the positions containing food (which cannot be shown at the same time as the
organisms), a green code is displayed when a zooid encounters food.



3. Error handling

When an artificial tunicate reproduces, it allocates for its child zooid the amount of memory needed
for a record plus a task. Later, the memory allocated for the task is automatically freed by the
runtime executive when the zooid dies (i.e. when the task main loop is exited). The memory
reserved for the record could be recovered, using Unchecked_Deallocation, but the linked list of
individual records would then be broken. An increasing amount of storage is thus allocated during
the course of the program. An interesting situation occurs when almost all memory is allocated,
and the next task which reproduces raises Storage_Error. This situation is not likely to happen,
because growth is usually regulated by the amount of food. However, provision for it should be
made.

The only sensible action in these conditions is to write a message and to output the results of the
simulation. But the program may only proceed if all tasks are terminated, and there are usually
several hundred tasks still active when one raises Storage_Error. These tasks are in various states,
some being engaged in reproduction, others in rendezvous with their offspring. Moreover,
Tasking_Error is raised at the point of call if the callee becomes abnormal.

The solution to these problems was not easy to find; the debugger could not help in presence of the
long linked chain of allocated tasks. The first task encountering Storage_Error should signal the
other "normal” tasks to terminate. Local exception handlers (in blocks surrounding the calls to the
Sexual_Reproduction and Asexual_Multiplication procedures) trap Storage_Error and
Tasking_Error, and raise an exception Over_Population, which is handled in the task body, outside
the main loop. Exceptions in tasks are not propagated, but the handler calls a procedure
Stop_Simulation before the task is killed. Stop_Simulation belongs to the visible part of a
Simulation_Clock package. This package provides a function Simulation_Is_Over, which is polled
by the zooids before engaging in every event in their task main loop. In the normal course of the
program, this function returns True when the simulation duration is elapsed. It also returns True
if a zooid has called Stop_Simulation.

But this is only half the solution. Another tricky situation may arise if a zooid has spawned a
child, sent a call to its Start entry, and died because of overcrowding before this call is accepted.
If a task is "waiting at accept”, the program never terminates. The solution is to make the "accept
Start" a timed accept, and to raise Over_Population if the call is not accepted within a short
interval. When there are hundreds of tasks active, it was found that this interval should be about
twice the pace of the task main loop (that is, 2.0 seconds).

4. Output

The visual outcome of the software is suggestive: starting from a single individual, the tunicate
population develops slowly on the screen. When most of the food is consumed, the population
decreases: reproduction requires a certain amount of reserves, which cannot be reconstructed by
feeding. Reproduction costs also to the reserves of the individuals, so that the exponential growth
of the population cannot be sustained very long.

Besides the visual impact, it is necessary to get numerical and graphic data from the simulation.It
would be impracticable to make the zooids write their state changes to a log file, with timestamps.
Furthermore, we do not want to let the artifacts of the simulation interfere appreciably with the
behavior of the zooids. This is why the linked chain of the zooid records was kept until the end of
the program. When the simulation is finished, it is possible to start from the pointer to the first
individual, and to visit every zooid Zooid_Pattern record. In this record, the fields Position,
Birth_Date, Disappearance_Date, etc., were updated during the existence of the zooid. Simple



counts give the number of zooids created during a given interval of time, the number of them still
alive at the end, and all the statistics needed.

The chain of records starting from the first ocozooid forms an unbounded arbitrary tree (in the
terminology of Booch [2]). Visiting all nodes is done recursively using a preorder traversal. Each
Chain node is the root of Number_Of_Aggregates oozooid subtrees. Each Oozooid node is in turn
the root of Number_Of_Generations subtrees. During the traversal, counts are recorded in a file
(in ASCII format). This is done only when the simulation is finished, so there is no time impedi-
ment which may slow down the simulation itself. To get to the first pointer, a Track_Zooids proce-
dure is added to the visible part of the Tunicates package, besides the Create procedure.

5. Computer implementation and performances

The CALIFE program was developed with an Alsys 386-DOS Ada compiler and environment on
a 80386 (20 MHz) micro-computer. The version 4.50 of the software represents about 4,500 lines
of Ada (including 1,500 lines of comments), not counting the utility libraries (about 3,000 lines of
code).

If not regulated, the Tunicate population derived from one initial oozooid leads in a few minutes
to about 1,500 active tasks before Storage_Error is raised (with 6 Mbytes of RAM). When food
availability regulates reproduction, the peak of the Tunicate bloom occurs when about 300 zooids
are present. This number is smoothly handled on a PC, in text mode, with a 3 x 10 array of
controller tasks in charge of the 25 x 80 space grid. However, the exponential growth of the zooids
should be limited by allowing only a few individuals per chain, say 5, instead of their real number
in the sea (which is around 100 for the most common species, Salpa fusiformis).

6. Discussion

With parameters set to reflect the relative durations of real Tunicates life cycle phases, a bloom
simulation with CALIFE takes about 3 mn. In this lapse of time, several generations of zooids
develop and die. A one-second pace is used for the task main loop, so that moves occur every
second. In text mode, the 25 x 80 grid of the PC screen is too small to allow a seemingly unlimited
travel of the zooids. However, a 200 x 200 grid or higher would be sufficient to let the population
develop with no or few encounters with the screen edges. This could be accomplished in graphic
mode, in which even the 480 x 640 size of the standard VGA video system provides enough space.
The abstractions used in the software for specifying the Space object and to display a Code simplify
the transition from text mode to graphic mode. This remains to be done in a forthcoming version.

Could the Tunicates package be made generic to fit different kinds of organisms ? At first the
answer seems positive: the record+task structure may apply to many species. However, designing
a generic organism with a parameter indicating whether it has an asexual reproduction phase or
not would be at least awkward. Moreover, the complicated reproduction of Tunicates is not a
unique event in the biological world. Many reproductive modalities exist: parthenogenesis (cyclic
or not), hermaphroditism, scissiparity, etc. A generic Organism package would have to be thought-
fully crafted. Furthermore, Ada 9X may provide still better solutions: a tagged private type
Organism could have a few "basic" fields, with the specific ones programmed by extension.

The scheduling of Ada tasks is inherently nondeterministic. This is well known by Ada program-
mers, but difficult to admit by ecological modelers only trained to FORTRAN or Pascal. When
confronted with the CALIFE simulations, which never give exactly the same outcome, they usually
attribute this to the random delay introduced before reproductions (see section 2.2.2). A version
with delay 0.0 (retaining the synchronization point) helps to illustrate this issue.



For biologists interested in Alife techniques, some analogies may be drawn. The organism’s living
matter is built from the heap memory space. Type definitions contain the information necessary
to determine its structure; they play the role of the DNA sequences of nucleotides. The Ada new
allocator corresponds to embryogenesis. The Start rendezvous with the offspring is the birth
process. The main internal loop in the Vital_Process task is the equivalent of the "biological clock™.
These analogies are helpful to map the "solution space” to the "problem space”. The resulting Ada
code more naturally fits the biological or ecological problem.

7. Conclusion

Ada tasks are a natural vehicle for representing autonomous agents in software simulations. Alife
techniques could benefit from the potential of the thoroughly studied model of Ada tasking. A
package spawning a population of self-reproducing organisms may be a building block of an object-
oriented model of ecosystem. Work is under way to add parasites of Tunicates to the CALIFE
model. This should introduce interesting interactions, where parasites rendezvous with their hosts.
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