Hydroinformatics’ 98, Babovic & Larsen (eds)© 1998 Balkema, Rotterdam, ISBN 905410983 1

The potential of proficient bioinformatics for aquatic ecology

PLaval

Observatoire OCéanologique; Station Zoologique, Villefranche-sur-Mer, France

ABSTRACT: Artificial life techniques are most of the time used to study evolutionary processes. In these
programs, simple creatures reproduce with mutations and cross over, and undergo selective pressure. Because
of the simplicity of the artificial entities, it is possible to put hundreds of them in interaction, and to run the
program over thousands of time-steps. Many evolutionary hypotheses are thus accessible to experimentation,
with a programming effort within the reach of a biologist. However, it is possible, with some software
engineering (SE) knowledge, to go beyond simple programming and to address ecological problems with
larger software constructions. SE methods help in building a sound software structure for articulating the
major entities of the domain, with software agents operating in a spatially-explicit environment. SE methods
are also useful for managing the concurrency inherent in complex systems and for keeping the ‘solution space’
close to the ‘domain space’, with computer artefacts reduced to the minimum. Ada is the language of choice
to meet these requirements (provided of course it is wisely used). SE principles are at the heart of Ada.
Moreover, the latest standardized form of Ada, Ada 95, provides safe object-orientation, and improved real-
time concurrency. Real-time concurrency is important to simulate autonomous organism interactions. Taking
account of the parallel interleaving of processes is difficult because it questions our cartesian view of causes
and effects. Mathematical modeling postulates a closed universe where processes are chained in deterministic
ways. The real world is open, and process combinations can be unnumerable. Informatics provides tools to
faithfully represent this real world, at the expense of provability. Mathematics lead to provable deductions, but
they only apply to particular situations. In building over several years what I called a virtual mesocosm for
simulating fragile marine planktonic organisms, I had many opportunities to verify the importance of a good
design based on sound SE. A satisfactory design, from both informatics and ecological points of view, is
usually not attained from the start. It is imperative to stay close to the biology; without meaningful biological
specification, it is all too easy to err toward computer artefacts, using nice programming subtleties but
unrealistic modeling assumptions.

1 INTRODUCTION

Bioinformatics is a recent discipline at the
intersection between informatics and biology. The
biology here is rather molecular biology. But
informatics as a discipline (not merely the use of
computers) may transform other biological domains,
such as ecology or evolution (Levin et al. 1997). In
this marriage, informatics brings its load of technical
culture, whereas biology is more or less passively
handled.

As a biologist/ecologist heavily involved with
informatics for over 25 years, I will try to explain
how I experienced this interpenetration. Informatics
is pervaded with technicality, part of it being more
the result of marketing pressure than of thoughtful

thinking. Another detrimental aspect is technique for
the sake of technique. On the ecological modeling
side, there is often a lack of appreciation of the
nature of complex systems. In a legitimate search for
elegant simplicity, some models sometimes resemble
mathematical recreations.

I will consider, on the informatics side,
programming practices, object orientation, and
concurrency. On the modeling side, open systems,
nondeterminism, simulations, artificial life and
intelligent agents. In conclusion, I will stress the
need to better integrate biological concepts in
informatics terms.

1259

2 INFORMATICS
2.1 Programming practices

Writing application programs is different from
writing the components of an operating system. For
applications, there is no necessity to stay close to the
machine level. Instead, the programmer should build
abstractions of the domain. Abstracting requires a
large vocabulary, encompassing all aspects of the
problem. Philosophical questions cannot be easily
discussed by a child, and the same is true in
programming: with a simple language it is not
possible to express more than ground-level
evidences.

However, many programmers do like simple
languages: these languages allow them to do tricky
things which make the fun of programming (they
think it is fun because they did not have the
opportunity to do program maintenance).
Unfortunately, a biologist or ecologist has little time
to learn a large language, and everybody around him
or her says this is unnecessary. They think so
because they only see programming as a way to code
algorithms to make calculations.

Programming may be more than that. It should be
rather viewed as a means of modeling. It is only by
composing high abstractions that creative
programming may emerge. But the way is not an
easy one. An unnecessary technicality is most often
confused with complexity. This is a natural
characteristic of the human mind: except for
geniuses, simplicity can only be attained by hard
work.

Informatics does not flow naturally into
simplicity. Moreover, the technical character of the
field leads easily to the perusal of jargon (see any
computing magazines); in programs, cryptic names
and undocumented tricks (often associated with
illiteracy in their own language) give their authors a
false sense of scientisticity.

Some ecologists with a weak background in
informatics may be tempted to compensate this
missing skill by collaborating with engineers.
However, students freshly from a technology
institute have their own technical culture. They were
educated to get a task done, with no insistency to
polish the means used: if the program works
correctly, so far, so good. This is understandable in
an industrial context, where there are time and
money constraints. Davis (1992) has written a vivid
analysis of the different approaches of academic
researchers and engineers faced to software design
problems.

However, a program may “work” and give
correct results in many different ways. 1 was
confronted with this evidence when rewriting pieces
of a large software several times during the past
years (because I wanted to explore a different

architecture, or because 1 wanted to use the
possibilities of a new hardware, or, recently, when a
major language revision — the change from Ada 83
to Ada 95 — opened new avenues).

When, after several years of satisfactory
operation, a software system is somewhat dismantled
in order to be improved, one is forced to examine
every component from a different point of view: is
this software object really necessary?, what was the
very reason for the presence of another one?, and so
on. A feature which seemed wisely coded (a feeling
reinforced by the fact that “it worked”), suddenly
appears questionable. Of course even a slight change
in a consistent large system has rippling effects.
When, after hard work, these modifications are
consolidated, the new solution is sometimes
obviously simpler than the old one. This a good
indication that is better. This new design would not
have been disclosed if the system had not been
touched. It is probable that many software designs
carry unnecessary contortions, whose hidden costs
are non obvious logic, difficult maintenance, and
hindrance of further progresses.

It should be fair to stress that what I would call
“software models” in ecology should not be
compared with industrial systems. They are rather
working prototypes to help in understanding a
research problem. When they work, they illustrate a
possible way the system may function; if they don’t
work well, they help to find where improvements are
needed. I insist on the clarity and elegance of the
software because in their absence the system would
be much difficult to understand.

2.2 Object-orientation

The object paradigm has, rightly, replaced functional
design. There is a definitive advantage to program
with clean abstractions, each having a public well-
delimited interface and a modifiable private
implementation. ~ Problems arise when the
programmer needs, at a higher level, to consider
objects which are not abstractions of real objects but
conceptual objects. Here the position of the ecologist
is less comfortable than that of the engineer. An
engineer devising, for example, an airplane control
system, may obtain any information he or she needs
to model the system. The difficult work amounts to
cleverly arrange this information.

In contrast, the ecologist has only at hand an
incomplete representation of the system: some large-
scale knowledge of the physical environment, some
laboratory experiments or field observations. The
rest is speculation, ranging from more or less
established theories to tentative explanations.
Further problems are the representativity of the
sampling, the validity of the laboratory experiments,
problems of scale (in space and time), etc.

1260

Bioinformatics should implement this
knowledge, taking care not to introduce too much
additional biases. Object-oriented features offer a
powerful way to model real-world relationships.

Here informatics (more precisely software
engineering) is useful because it provides
methodologies for system analysis. Simulation

techniques may also be used to observe the behavior
of the model.

For hydrological simulations, an attempt has been
made by David (1997) to integrate legacy
FORTRAN code in an object-oriented framework.
This pragmatic approach is still at a too low-level of
abstraction, because it glues together modules which
were not crafted from the start with an object-
orientation in mind.

Like any powerful technique, informatics may be
easily misused. Object-oriented languages
introduced inheritance, which was first viewed as a
handy means to reuse code: just write features
distinguishing a new object from an almost similar
one. This useful concept looked attractive,
particularly to the novice programmers (those
believing that is more “efficient” to write a=a++
instead of Undigested Preys = Undigested Preys
+ 1). In ecological modeling it is not uncommon to
see such things as Zooplankton inheriting from
Phytoplankton (this is inheritance at a too coarse
level, an indication that the Phytoplankton object has
very few properties). Moreover, inheritance can
easily be confused, by non biologists, with
evolutionary descent; this may only be justified in
special cases. As Casais (1998) wrote (about re-
engineering legacy code): “Software designers rely
on powerful object-oriented mechanisms, especially
inheritance, to bypass modeling weaknesses or avoid
a rigorous process when extending object-oriented
systems”. Inheritance, wisely used, can nevertheless
be a useful way of augmenting the diversity of a
system without radically changing its structure.

The real difficulty is, however, to compose a
system with meaningful objects, having sound
relationships. Parsons & Wand (1997) give a
comprehensive view of analysis and design. They
point out that objects can be both viewed as units
which model concepts from the domain, and
implementation units for the practical realization of
the software. Focusing too early on the
implementation aspect can be detrimental to the
design of the system. This danger can only be
avoided if it is the ecologist which drives the design.
He or she should be able to strongly discuss with the
computer expert to delineate objects and
relationships which make sense for the problem.

It is my experience that the feedback from
software engineering methods used in system design
can be very rewarding. Design methods add
guidance on what is possible or not. In turn, the
ecologist should decide if a possible relationship or

1261

object composition permitted by the rules, or the
compiler, is compatible with the knowledge at hand.
Sometimes this interrogation leads to a new insight
on the problem. This is the very essence of
modeling.

A short example may be in order. Implementing
host-parasite interactions in as software where hosts
and parasites are autonomous concurrent artificial
creatures (Laval 1997) leads to interesting
bioinformatics questions. How will the parasite (a
crustacean) detect its host (a gelatinous filter-
feeder)? How will it feed on it? In an artificial world
made of data structures, pointers, and protected
objects (a concurrent high-level construct available
in Ada 95), it is necessary that algorithms and data
structures closely reflect the biological knowledge.
A chain of pointers to records containing
characteristic data may thus represent a chemical
track left by a host in space. The way to access these
data is solved in computer terms, but it should also
closely mimic how the parasite will find its host.

2.3 Concurrency

Real-world objects behave concurrently rather than
sequentially. However, computer languages allowing
us to deal with concurrency developed slowly, and
practitioners readily discovered that concurrent
programming is much more difficult than sequential
programming. Even if each component object
executes a short and correct algorithm, they interact
in combination. It is often not practicable to test
every possible path. Moreover, the time now
intervenes, so that the order in which the objects
interact is relevant, often within milliseconds.

Do not confuse concurrency with parallelism.
Parallelism is a way to improve computation time on
a multiprocessor (see for example Foster 1995).
Concurrency refers to the execution of logical

concurrent threads of control. Even on a
monoprocessor (for example on a personal
computer), these flows of control may be

imperceptibly interleaved -- a kind of time-sharing,
giving the impression that each object executes on
its own processor (in this case there is no speed
increase, but the logic is much clearer).

The importance of concurrency in modeling has
been underestimated. Mathematical modelers, for
which programming essentially consists to translate
equations in FORTRAN-like languages, are foreign
to this concept. The mathematics of concurrency
(mainly temporal logic, Petri nets) are precious for
solving small examples, but becomes unmanageable
for most real-world problems.

The engineering domain has always been closely
concerned with safety and error recovery. The
expertise and lessons engineers leamed from real-
time control of critical appliances (such as airplanes,

rockets, nuclear power plants) should not be
considered as largely irrelevant by ecologists. Of
course, in a model written for understanding an
ecosystem there is no threat for human lives, no
timing constraints within microseconds.
Nevertheless, a computer language with built-in hard
real-time concurrency, such as Ada 95, is a blessing
for ecologists. It gives them a well-proven modeling
vocabulary apt to deal with the dynamic scenarios of
organism interactions.

Modeling a domain with concurrent objects
conduces to comparable difficulties, but at a higher
level, than when searching for good objects. Awad &
Ziegler (1997b) point out that a system is made of
processes, which are executed by objects. Focusing
too early on the objects alone may produce a too
low-level view of the system. Awad & Ziegler
(1997a,b) show how processes and objects can be
smoothly integrated during the design.

3 ECOLOGY AND MATHEMATICS
3.1 Open systems

Mathematics is the royal avenue to deal with closed
systems. The mathematical approach is very
satisfactory because with its help, deductions
completely consistent with a few initial propositions
can be proved. Wegner (1997) has, in an
illuminating article, clearly pointed out the problem
with mathematics in modeling. Briefly resumed, its
arguments are as follows. The mode of operation of
mathematics is algorithmic: if (this proposition) is
true, then (such consequence); else (another one).
Any sequential algorithm can be simulated with a
Turing machine, in which a tape coded with
instructions is read stepwise; the next instruction
executed results from the last one read.

In a Turing machine, a proposition cannot be
both true and false, because the system is closed. In
an open system, however, an external event can
modify the state of the tape between the time is was
read and the execution of what was read. Open
systems are thus immensely richer in possible
outcomes than closed ones. But this depends on
predictability, because in most cases, the number of
possible states cannot be enumerated (this is akin to
the Godel theorem of incompleteness of arithmetic
over the integers). The limitations of a mathematical
representation of the real world have been discussed
by Casti (1996). Their repercussions on software
engineering practices are commented by Zelkowitz
(1995).

We are thus faced with the choice between using
mathematics, and being able to solve only special
cases, and using informatics, which can more closely
simulate the concurrent interactions of the real

world, but with some indeterminacy. Mathematical
modelers may argue that these special cases which
can be completely solved may give interesting clues
on the functioning of the real system. This is
certainly true in some cases. The question is how far
this may apply, and if the richness of interactions in
a large ecosystem may not produce emergent
phenomenons not deducible from the premises.

3.2 Nondeterminism and simulation

Mathematicians confronted with the natural
variability of natural systems have developed
techniques to master this irritating lack of rigor.
They postulated that variable phenomena obey
mathematical equations containing an error term, the
amplitude of which can be estimated if its statistical
distribution is known or may be inferred to some
degree.

It is very difficult to disprove this assertion. To
establish with some confidence a slight departure
from a statistical distribution a huge amount of data
is usually required. Physicists and economists have
recently shown that some complex phenomenons
can be better described with a non-gaussian stable
Lévy distribution. This distribution has the
interesting property of having an infinite variance, so
that statistical theorems cannot apply (Bouchaud &
Walter 1996, Mandelbrot 1996).

The presence of self-organized criticality (Bak

1996) in many complex phenomena makes
impossible to precisely predict when the
“avalanches” which characterize them will be

triggered. With a good software model (a software
putting in action concurrent processes and objects),
it should be possible to observe some likely
outcomes, and to assign them probabilities. But it
seems impossible to be exhaustive, so that it is not
practical to completely rule out catastrophic
situations where rare independent processes combine
unexpectedly.

In simulation softwares, most efforts are devoted
to provide statistically unbiased behaviors of agents.
This is understandable and highly recommendable
when there is an underlying statistical hypothesis
that the simulation shouid test. If the statistical
distribution is unknown or not testable, the aim of a
simulation should better be turned toward
understanding how a system is structured and how it
works. A simulation software of this kind is more an
animation of a system design than a statistical tool. It
has nevertheless a great potential explaining power.
It is actually a modeling tool.

The prevalent paradigm in simulation software is
event-driven simulation. This is adequate when
objects trigger events which are managed by some
central controller. Concurrent messages are

1262

dispatched by a scheduler which orders them and
resolves ties. This pseudodeterministic outcome is
convenient to apply statistical tests. But a more
realistic modeling should not resort to a central
controller: entities should be allowed to freely
interact.

3.3 Agents and artificial life

Bioinformatics is a way to express biological
concepts with computer techniques and theories. The
effervescent field of artificial life is a good
illustration of this notion. I would argue that even in
what is called “weak artificial life”, informatics may
play an important role.

Programming numerous rudimentary creatures
with a “chromosome” (a short string of symbols) is
not an unsurmountable task for a student in biology
with some computer skills. Moreover, it is very
attractive and thought provoking. Very interesting
and profound results are obtained when these
programs are run over thousands or millions of
generations.

Designing and programming a small ecosystem
populated with elaborated artificial creatures
requires both a good knowledge in biology/ecology
and a greater proficiency in programming and
software engineering. Current researches in agent
and cognitive science are mainly made by computer
scientists. Their informatics part is well developed.
In contrast, the translation of biological concepts
into informatics terms is not so well achieved.

A (so-called intelligent) agent is an autonomous
unit with an internal state, sensors, and a
representation of its external environment. An agent
may use a strategy to attain a goal. It is possible to
simulate agents in economy because as human
beings we know the rules (or at least some rules) of
the game. But is it possible to affirm that we can
craft an intelligent artificial fish or planktanic
crustacean? We know very little of their sensory
capacities (we cannot know their environment with
our sensorial equipment), that is, how they see or
feel the world. In our present state of knowledge,
bioinformatics may rather help in disclosing the
consequences of hypotheses: for example what
would happen if a predator could detect its prey at
such distance?

4 CONCLUDING REMARKS

In informatics a compiler may provide either a “thin”
or a “thick” binding of a language to an external
library, according to the degree of integration of the
library. Similarly, an ecologist may have a thin or
thick involvement with informatics. The former is
the usual case, because ecologists have not enough

time to assimilate concepts remote from their
research expertise. I propose here that ecologists
with a good background in informatics try another
point of view, where informatics plays the role
exerted until now by mathematics in ecological
modeling.

In this perspective, bioinformaticians may work
toward the elaboration of a library of reusable and
customizable modules coding elementary processes
from ecology and biology: reproduction (with many
modalities: sexual, asexual, parthenogenetic, etc.),
feeding (autotrophy, heterotrophy), growth,
predation, parasitism, and so on. Object-oriented
programming will give the means to refine and adapt
these basic bricks. The difficult part lies not in
informatics but in the specification of a consistent
hierarchical arrangement of the different concepts.
Then the ecologist needing to simulate the growth of
a population will be in the same position than the
mathematician wanting to extract the latent roots of
a matrix.

Informatics is still in a state of effervescent
development. There will be much work before such
libraries attain a general agreement. Trying to
translate concepts from ecology into informatics
constructs may at the end be beneficial to ecology
itself.

REFERENCES

Awad, M. & J. Ziegler 1997a. A practical approach to
object-oriented state modeling. Software Practice
Exp. 27(3):311-328.

Awad, M. & J. Ziegler 1997b. A practical approach to the
design of concurrency in object-oriented systems.
Software Practice Exp. 27(9): 1013-1034.

Bak, P. 1996. How nature works. New York: Springer-
Verlag (Copernicus)

Bouchaud, J.P. & C. Walter 1996. Les marchés aléatoires.
Pour la Science (french ed. of Scient. Amer.), Spec.
issue “Le Hasard” Apr. 1996:92-95.

Casais, E. 1998. Re-engineering object-oriented legacy
systems. J. Object-Oriented Progr. 10(8):45-52.

Casti, J.L. 1996. Confronting science’s logical limits.
Scientific American, 275(4):78-81.

David, O. 1997. A kernel approach for interactive-oriented
model construction in Java. Concurrency: Practice
and Experience 9(11):1319-1326.

Davis, A.M. 1992. Why industry often says ‘no thanks’ to
research. IEEE Software, 9(7):97-99.

Foster, LT. 1995. Designing and building parallel
programs. Reading: Addison-Wesley.

Laval, P. 1997. A virtual mesocosm with artificial salps for
exploring the conditions of swarm development in
the pelagic tunicate Salpa fusiformis. Mar. Ecol.
Progr. Ser. 154(1):1-16.

1263

Levin, S.A., B. Grenfell, A. Hasting & A.S. Perelson 1997.
Mathematical and computational challenges in
population biology and ecosystem science. Science
275(5298):334-343.

Mandelbrot, B. 1996. Du hasard bénin au hasard sauvage.
Pour la Science (french ed. of Scient. Amer.), Spec.
issue “Le Hasard” Apr. 1996:12-17.

Parsons, J. & Y. Wand 1997.Using objects for systems
analysis. Comm. ACM 40(12):104-110.

Wegner, P. 1997. Why interaction is more powerful than
algorithms. Comm. ACM 40(5):80-91.

Zelkowitz, M.V. 1995. Algebra and models (and reality).
ACM SIGSOFT Softw. Engin. Notes 20(2): 55-57.

1264

