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ABSTRACT: A virtual mesocosm is a software framework simulating a controlled oceanic environment.
Artificial salps and their food are introduced into the mesocosm where their development can be
watched on the computer screen. The artificial salps are software entities mimicking closely the life-
history and behavior of their real counterparts (the tunicate Salpa fusiformis): they swim in the artificial
space, where each individual feeds on the local resources; they metabolize, accumulate reserves, and
grow; their reproduction alternates between asexual and sexual generations. Plausible values are
given to 21 parameters characterizing their life-cycle and metabolism. A virtual mesocosm is in fact a
model, focused upon individuals and their spatial interactions. The relationships present in the con-
ceptual model are more completely and more precisely stated in a software design than in a mathe-
matical model. Many computer experiments are possible with the artificial salps, without the difficult
problems associated with the sampling and laboratory maintenance of the real, fragile, planktonic
organisms. An example is given showing the effect of different spacing between food patches.
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INTRODUCTION

Salps are macroplanktonic marine tunicates that
may become very abundant at certain periods. Their
so-called blooms, or swarms, result from their ability to
multiply asexually. These swarms can cover very large
areas; it is estimated that they could clear 100% of
the upper 100 m of the water column in a few days
(Nishikawa et al. 1995).

In salps, the organism emerging from the egg, or
oozooid, gives birth by asexual multiplication to a
chain of identical individuals, or aggregates. Each
aggregate in the chain reproduces sexually and emits
an oozooid (see for example Alldredge & Madin 1982,
for a description of the tunicate reproductive cycle). In
this text, when a distinction is not necessary, I will call
both oozooids and chains ‘zooids'.

Modeling the development of tunicate swarms is
worthwhile because they can have critical effects on
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the pelagic ecosystem. A model was attempted by
Andersen & Nival (1986) for Salpa fusiformis Cuvier, a
tunicate that forms large populations in the Medi-
terranean. These authors formulated a mathematical
model of the population dynamics of S. fusiformis,
using several differential equations. This model
grossly reproduces the large population increase of the
species following a phytoplankton bloom. A more
detailed model, taking space, more physiological para-
meters, and individual histories into account, would be
mathematically intractable.

In this article, I propose a different approach,
making use of what I call a software model that is in
essence a model, but not one based on mathematical
equations. This approach consists of building entirely
in software an artificial world populated with artificial
creatures mimicking closely real salps. A convenient
metaphor which will appeal to oceanographers is that
of a virtual mesocosm. In biological oceanography, a
mesocosm is a large enclosure where selected plank-
tonic organisms may be sampled at intervals, while the
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external conditions are monitored. But mesocosms
would be difficult to build for salps. A software model
does not have the physical limitations of mesocosms.

METHODS

Soitware development. Building a mesocosm in soft-
ware is a large endeavor. Writing software in this con-
text means much more than simply coding algorithms
in some computer language like FORTRAN. What is
required is a working knowledge of software engi-
neering (particularly object-based design). Because
many objects in the design should execute concur-
rently (i.e. the creatures, the simulation clock}, there
are additional difficulties in comparison with the
design of sequential programs.

To develop the software I followed a methodology in
use in the aerospace industry, called HOOD, Hierar-
chical Object-Oriented Design (Delatte et al. 1993).
HOOD prescribes a very formal set of rules, in order to
ease project coordination by teams of programmers,
which aim to arrive at automatic code generation from
a graphical and textual description of the model. Being
an individual programmer without industrial support, I
am content to adhere closely to the spirit of the rules: |
always strive to craft software ‘objects’ corresponding
to ecological entities and with relationships having an
ecological meaning. In a software design, it is easy to
introduce artefactual objects which permit unnatural
relationships with no logical significance to apparently
‘work'. In a technical system, it is generally possible to
determine if the software corresponds correctly to
what has been designed. In an ecological model there
is no such luxury, unless precise data are available, a
very rare situation in plankton ecology.

In essence, the HOOD methodology consists of the
decomposition, in a hierarchical manner, of the system
to be modeled into software objects corresponding to
the domain entities. The top level, or root, contains
only 1 (abstract) object, which is the entire system. To
build the next level, one has to find objects which,
together, will provide the same functionalities as the
root object. These ‘child’ objects are then decomposed
in turn at the next level, and so on until 'terminal’
objects, needing no further decomposition, are found.
These steps should be performed very carefully,
because a ‘wrong’' object, i.e. an object unnaturally
aggregating functionalities pertaining to hetero-
geneous entities, will carry its bad design to the lower
level(s), until it is discovered that it has become impos-
sible to connect some other child objects which are
needed to provide a service. The design at this level
should then be rearranged in another way, with pro-
found repercussions for consistency at higher levels.

It is possible to code a design in several languages,
but Ada is the only one providing both concurrency
and object-based programming. Moreover, Ada was
designed from the onset to support software engineer-
ing principles, which makes it the language of choice
to set up a sound design. HOOD was first aimed at an
Ada translation (other languages, like C++, were later
added for industrial reasons, but the mapping is not so
natural). Ada is a strongly typed language (much more
so than Pascal): checks made during a compilation are
much more stringent than the ones made in FORTRAN
or Pascal programs. They allow one to detect very
subtle errors. An Ada compiler also controls the inter-
module consistencies, a feature which greatly helps to
verify the design of a program.

The software for the model referred to in this article
was first named CALIFE (for Computational Artificial
LIFE); I have stuck to this name, even if it now seems
too general. It comprises, in its present form (version
8.0), more than 14000 lines of code — including utility
routines and comments (about one third). Hallam et al.
(1996) pointed out the difficulty in explaining individ-
ual-oriented simulation software to the readership of
an ecological journal. I encountered similar problems
for CALIFE. A mathematical model can be summa-
rized by writing down its major equations and present-
ing the conceptual model. This is enough information
to allow an appraisal by the scientific community. In
contrast, to disclose a software model, the source code
along with a detailed documentation should be avail-
able. The Ada 83 source code of CALIFE is stable
enough and well documented in many sections, but it
is still evolving. Before its re-design in Ada 95 (Inter-
metrics 1995), I intend to make it available in a copy-
righted medium. Readers wishing to examine how
some sections are coded may contact me directly. Like
Hallam et al. (1996), I will only try in this article to
describe the present state of the software in general
terms, with few computer details.

Object-based modeling. Several recent software
engineering textbooks explain how to build a detailed
conceptual model of a domain, which can be translated
to executable code (for example Booch 1991, Rum-
baugh et al. 1991, Coleman et al. 1994). The same tech-
niques used to design models of manufactured systems
may benefit ecosystem models (Laval 1995a). The
components of such software systems are software
‘objects’. These objects often directly correspond to
real objects in the domain, but may also represent
some high-level abstractions. In a software design of
an ecosystem, one finds environmental objects (for
example, food) as well as objects corresponding to
(artificial) organisms. Software objects have behavior,
and thus may mimic the dynamics of real organisms in
their environment. With this kind of model it is possible
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to go down to the individual level. Each individual
object remembers its position in space, its local state,
and behaves according to its current parameter values.

Of course a real ecosystem cannot be specified with
only a few objects. However, it is possible to carefully
select key components of the system. A hierarchical
design method is very useful here (Miiller 1992, Laval
1995a). Of course mathematical modelers building a
conceptual model also strive to express key ab-
stractions. But instead of dealing with theoretical
relations (which frequently are approximations), the
ecologist building a software model can work with
more concrete representations and may more easily
add new expertise in the domain (Coquillard & Hill
1997).

Object-oriented languages are tools of choice to
develop this kind of model. In fact these languages
seem so powerful that it is tempting to try to set up a
generic object-oriented, individual-based ecosystem
model, composed of ecologically significant building
blocks, which could be tailored to particular ecological
problems. Olson & Sequeira (1995) made such an
attempt. Making a general object-oriented ecosystem
model is the aim of several other authors (Baveco &
Smeulders 1994, Hill et al. 1994, Maxwell & Costanza
1994, Wenzel 1994, Bindingnavle et al. 1995, Mooij &
Boersma 1996). The potential of such a tool in ecology
would be considerable. However, crafting a multiform
and flexible tool will require a great amount of work,
owing to the diversity of life-histories and ecological
strategies of biological organisms (a point often under-
estimated by computer scientists). Even with these
considerations in mind, it seems unlikely that the same
system could be tailored, for example, for terrestrial
vegetation studies and for plankton ecology.

To study the development of salp swarms, [ wrote a
specific software model aimed at the design of artificial
salps in their environment. The experience gained
from this first step will later be generalized to include
other organisms. In this specific model, I combine my
programming experience with my biological back-
ground on gelatinous macroplankton (Laval 1980,
Laval et al. 1989, 1992).

SOFTWARE CHARACTERISTICS

Overview of the structure. Higher-level modules in
the HOOD hierarchy represent the ecological environ-
ment, with the necessary artefacts to conduct a simula-
tion. In the ecological environment a predominant role
is played by a Space object. The Space object contains
the resources in a Salp_Food object. The simulation
context adds a global clock, a means to display the
individuals on the computer screen, and counters to

record the numbers of zooids created. The lower-level
objects are the artificial organisms mimicking tuni-
cates. In the computer implementation of the tunicate
reproductive cycle, a chain (composed of several
aggregates) is represented by only 1 object, because
all the aggregates constituting the chain are clones
attached together, and all have the same behavior, the
same bioclogical characteristics, and the same overall
position.

Space. Space and time in an individual-based simu-
lation obviously present scaling problems. In a pro-
portional representation of the space occupied by
each individual, only a very small spatial area may be
displayed. On another hand, if some spatial scaling is
implemented, the scaled-down spatial area may con-
tain an unmanageable number of individuals. Schef-
fer et al. (1995) proposed using a super-individual
concept to alleviate this problem. This is an ingenious
solution to reduce calculations in a numerical model.
However, it has the disadvantage of blurring the indi-
vidual characteristics, each super-individual being
only a mean individual of its category. In CALIFE, I
wanted to retain the advantages of individual-based
models, so I chose another way to compromise. I did
not use super-individuals (except in a certain sense
for chains, where each individual stands for several
identical aggregates). Individual zooids stand for
themselves; it is their behavior which is averaged over
time periods.

Space in CALIFE is a 2-dimensional grid of 318 x 222
positions, representing a vertical slice of the ocean. To
be able to estimate filtered volumes, each cell of the
grid is considered as having a small extent in the third
dimension (not seen in projection).

This Space object is made consistent with the time
scale in the following manner. Each grid position rep-
resents the mean distance an individual can travel in a
day (the time unit). With this convention, each occu-
pied ‘position’ is in fact a mean position over a day
spent in some volume of water (a cell). Salpa fusiformis
has a mean swimming velocity of 1.3 to 6.6 cm s7!
(Bone & Trueman 1983). If moving from one grid posi-
tion to the adjacent position represents a (mean) day of
swimming, the horizontal distance between 2 grid
positions would represent about 3400 m. However this
species, whether solitary individuals or chains, does
not swim in a straight line (and probably not at con-
stant speed). Thus its mean daily transference in x-pro-
jection may be much less than 3400 m. A rather arbi-
trary, but convenient, value of 1000 m will be retained
as the horizontal spatial unit.

In the vertical, it is important to represent the first
100 m, where blooms usually occur. Therefore, the 222
positions were each made 0.5 m high. The virtual third
dimension can be assigned a thickness of 0.5 m. The
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grid thus corresponds to 318 x 222 cells of size 1000 x
0.5x0.5m.

A comparison with field data shows that a 250 m® cell
volume is not unrealistic. The density of oozooids in the
sea depends widely on the time of the year. I have an
unpublished series of samples obtained in the morning
between January 1, 1963 and May 5, 1964 in the Bay of
Villefranche (Mediterranean Sea) at a depth of 30 m
with a 1 m plankton net (filtering about 300 m?). Of
these samples, 156 were negative for Salpa fusiformis
oozooids. During bloom periods, the density of
o0ozooids varied from 1 to 45 per sample (mean 5.4, n =
26). With the impossibility of representing the real
numbers of individuals, the compromise of considering
a mean individual filtering a mean daily volume of
250 m® does not scale up too badly.

Time. CALIFE is a concurrent software where each
artificial individual executes its own actions auto-
nomously. Often parallelism is only introduced as a
means of taking advantage of a multiprocessor archi-
tecture to reduce computation time (see, for example,
Foster 1995). However, even on a monoprocessor, Con-
currency may also be used to implement conceptual
parallelism. With conceptual parallelism, processes
which are logically concurrent are programmed using
modules which have their own threads of control (on a
monoprocessor, the threads are interleaved by slicing
the processor time). This is possible in Ada, where
these modules are called tasks. Conceptual parallelism
results in programs which are easier to understand.
Ada programs may also implement other forms of par-
allelism which, on a multiprocessor, benefit from an
increase in speed.

In CALIFE, each individual is driven by an internal
clock, with a mean 'daily’ period. With a 90 MHz CPU
monoprocessor, 1 d of a tunicate life in fact lasts for
1.5 s of computer time. For each individual the actual
computation time is on the order of 2 ms. As there may
be hundreds of individuals executing concurrently on
the computer's processor, during the idle time the con-
trol is given (by the Ada runtime) to the other individ-
uals. Within 1.5 s all the individuals will have carried
out their daily computations. A shorter 'day’ duration
cannot be safely used with the hardware available.

There is also a global clock, which is only used to set
the duration of the simulation, and is only consulted by
the individuals (in the same way that real creatures
look at the sun). This astronomical clock is a scaled
down version of the system clock, with a 1.5 s period.
This global clock is graduated in mean days, and its
time is displayed on screen to reflect the progression of
the simulation.

Real-time visualization. When simulating organiza-
tional or manufacturing systems, animation is an
effective means of showing the results of simulations

(Verbraeck & de Vreede 1993). In CALIFE, the final
counts at the end of the program could be obtained
without displaying the individuals. However, showing
on-screen what is happening has 2 distinct advan-
tages. The first is related to program design. Mapping
the Space object to the computer display makes read-
ily apparent that space should be designed as a
resource shared by all the individuals. Second, dis-
playing the individuals is invaluable in program
development, because concurrency is notoriously the
source of hard-to-find bugs in software. Displaying
individuals is not without problems. Individuals are
represented by small colored dots 2 x 2 pixels wide.
There are 10 different color codes distinguishing
oozooids and chains as live feeding or non-feeding
and as mature or non-mature, and also oozooid and
chain cadavers. Even on large monitor displays, their
different codes are difficult to distinguish. For the
software development, another version of CALIFE
was derived in which categories of individuals are
represented with different text characters. Using the
screen in character mode limits the spatial grid to a
dimension of 78 x 26, but the different kinds of indi-
viduals are clearly apparent. This character mode ver-
sion cannot be used for realistic simulations, because
the border of the spatial grid (which acts as a reflect-
ing boundary) is encountered by the outer individuals
before the end of a simulation. It was nonetheless
very useful for program development. In pixel mode,
the outer individuals in a typical simulation (less than
200 'days’) do not have time to reach the grid limits,
so the space may be considered unlimited.

THE ARTIFICIAL ORGANISMS

Structure and dynamics. Each artificial salp is imple-
mented with an Ada record with a component contain-
ing an access value (a pointer) to a task (Laval 1995b).
The other components store the individual's birth date,
weight, actual position, etc. The task allocated to an
individual starts executing when the individual is cre-
ated. It runs in a timed loop, simulating the individual's
biological clock with each period corresponding to an
average day spent by the organism.

During each clock cycle, the individual moves, feeds,
metabolizes, and grows. This is accomplished by call-
ing corresponding procedures. After a certain time, if
its reserve level is sufficient, the individual repro-
duces. This is accomplished by allocating a new loca-
tion in the computer memory to another individual,
and linking this new individual to its parent via an
access value. This creates a linked list of individuals
starting from the first individual. Oozooids produce 1
or more generations of chains; chains produce the
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number of 0ozooids corresponding to their constituent
numbers of aggregates (Laval (1995b). The linked list
is thus a multibranched tree, alternating oozooids and
chains.

Because the tasks belonging to the individuals are
independent processes, at a given moment 2 individu-
als having different birth dates may perform different
actions. The repertoire of these actions is outlined in
Table 1, using pseudocode. Reproduction and move-
ments constitute large amounts of the code.

Reproduction. With their asexual multiplication
phase, the number of tunicates can grow explosively.
One oozooid gives birth to a chain composed of a
number NA of aggregates, which a generation later
gives NA oozooids. Therefore, in the absence of mor-

tality (an unrealistic hypothesis), 1 oozooid would give
NA" oozooids after n generations. For Salpa fusi-
formis, NA is about 125; an oozooid produces a chain
in 8 d, and a chain emits its NA oozooids in 14 d (Bra-
connot et al. 1988). After 4 generations (about 88 d), 1
oozooid would have the potential to produce 2.4 x 108
oozooids. Moreover, a chain emits several generations
of chains (a number NG of generations, up to 4). Thus
NA oozooids are produced NG times at 3 d intervals,
leading to still potentially higher numbers. Of course
such numbers are not reached in the ocean, because
there is not enough food, so that many chains do not
reproduce, or they produce fewer oozooids. Salp
swarms are nevertheless prominent events in the
open sea (see for example Alldredge & Madin 1982,

Table 1. Algorithmic structure underlying the behavior of an artificial tunicate (simplified). The number in square brackets fol-
lowing an ellipsis (...) indicates how many Ada statements make up the action. [Ooz/Ch| means that specific code exists for both
the oozooid and the chain generation

{7
Initializations
.. [13]
Wait the duration of the embryonic phase

... [58]
Main_Loop : internal cycle

Cadaver
... [23]
if Cadaver then
if inside area limits then go down
.. [23]

end if (inside frame)

. [27]
else if Live then

[Oo0z/Ch| Determine the food requirements
.. [13]

Try to move to an empty position (x, y)
... [193]
- [3]
... [33)

. [20]

... [27 + library package]

... [55]
end if (Live)

. [11]
Increment the age
end loop Main_Loop

[Oo0z/Ch}] Ada ‘rendezvous’ with the parent (transmission of the pointer on the child structure)

Find an empty position close to the parent (abort if not possible)

[{Oo0z/Ch] if conditions to pass to the Mature stage are fulfilled, do so; if longevity is exceeded, change the appearance to

else continue until complete decomposition (no display)

[Ooz/Ch] if Cadaver 'longevity' is exceeded (decomposition) then disappear (and exit Main_Loop}

if there is food at (x, y) then subtract up to the food requirements
[Ooz/Ch] if food obtained then grow (increase the current weight — only if not Mature, and increase the reserves)
[Oo0z/Ch] Decrease the reserves by the amount corresponding to metabolism

if the reserves go below the Reserve_Min value, make the age equal to the longevity (will cause death at the next cycle)
Every 4 moves, change randomly the swimming direction

[Ooz/Ch] if conditions (age, reserves, etc.) allow, reproduce (this decreases the reserves)

Compute the time remaining until the next cycle, and wait for this duration
(if not enough time available, raise exception Timing_Error)
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Laval 1995a). In the software, reproduction follows
the following algorithm:

Each oozooid produces up to NG generations of
chains until it dies.
The size S (number of aggregates) of the first chain
is initialized to NA.
For Generation_Index = 1 to NG loop
Emit 1 chain
For Oozooid_Index = 1 to S loop
Produce 1 oozooid. Each oozooid grows
and resets S (<NA) according to the
amount of reserves (which depends on
the food encountered)
end loop;
Continue if there are enough reserves
end loop;

It is not possible to simulate in the CALIFE software
the multiplication of chains with 125 aggregates.
Machine considerations (memory size, concurrency on
a monoprocessor) limit NA to a small number, not
exceeding 5 or 6. This small number is nevertheless
sufficient, owing to the exponential growth, to produce
peaks of 600 to 800 individuals living concurrently.
With this number it is possible to simulate the multiple
spatial interactions existing in a tunicate swarm.,

This scaling of the number of individuals should be
unfolded to interpret the numbers of individuals pro-
duced by the software. If the number of individuals
constituting a chain is artificially limited to 5 (for exam-
ple), it may be considered that the number of individu-
als produced by the CALIFE model is scaled down by a
factor 25. That is, chains of 5 aggregates in the software
correspond to chains of 125 aggregates in the ocean.

Because these numbers grow exponentially, loga-
rithms must be used to compare the numbers of indi-
viduals created in a simulation with the numbers found
in the ocean. The proportionality factor, however, may
be much less than the theoretical value of 25 (for NA =
5), because of the unknown mortality in the field.
Moreover, sampling problems make such comparisons
problematic.

The oozooid of Salpa fusiformis emits the first chain
when the stolon has differentiated enough. This differ-
entiation time depends on the food available and its
quality, and on physical factors like temperature. In the
software these conditions are translated into the fol-
lowing tests: the first chain is emitted only if 3 condi-
tions are fulfilled:

(1) the age of the oozooid is greater or equal to the
minimum for the first chain emission;

(2) the weight has reached the minimum adult
weight; and

(3) the reserves are greater or equal to the minimum
reserves necessary for reproduction.

For the subsequent chains the conditions are the same,
but with a minimum age augmented by the interval
between chains multiplied by the number of chains
already emitted. Comparable conditions are set on chains,
this time for the oozooid emission by each aggregate.

Movements. After a 'day’ spent at a grid position,
each individual moves to another position. This posi-
tion is the next one along in the present swimming
direction, unless the position is occupied (by another
individual, or by an obstacle like the surface). In this
case the zooid searches the nearest free position by
changing its present direction, as described in Laval
(1996). The actual direction is also changed randomly
if the reserves of the individual stay below one fourth
of the adult weight (an arbitrary quantity) during 4 suc-
cessive moves. This was necessary to increase the spa-
tial dispersion of the bloom. Otherwise the food, which
is not renewed, rapidly becomes exhausted in the area.
The algorithm for random changes is programmed
using a machine-independent pseudorandom genera-
tor (Harmon & Baker 1988).

During reproduction, the oozooids issued from a
chain must each be emitted at an empty position next
to the parent chain. This is done in mutual exclusion so
that a position cannot be occupied by a nearby individ-
ual while the oozooids are emitted. In order to distrib-
ute the offspring around the parent, each emitted
00zooid tries consecutive swimming directions until a
free position is found.

In a rectangular grid there are 8 possible directions.
I experimented with this number, but I eventually sup-
pressed the 4 diagonal directions to keep the space
homogeneous in each direction (see 'Food distribution'
below).

Growth. Coding a growth function revealed unex-
pected difficulties. Classical growth functions from the
literature are too general to be translated to an individ-
ual basis. They express length (only) as a function of
time, after fitting a general equation to a sample of
individuals of different sizes; the resulting equation
only summarizes the growth of an idealized mean indi-
vidual. This is of little help in CALIFE, where it is nec-
essary to compute the new weight of a given individual
eating some amount of food.

The dynamic nature of the software makes it neces-
sary to introduce the notion of reserves. In the new-
born individual, these reserves are localized in a spe-
cial organ, the placenta (see Bone et al. 1985). They
allow the newborn individual to live when it is not yet
able to filter food. Later on, growth and production of
new individuals are so intense that the food assimi-
lated is rapidly invested in production of new tissues.
The notion of reserves is then a convenient abstrac-
tion for managing a temporary storage for the food
assimilated.
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The growth routine has thus to compute a new
weight and a new level of reserves. At the individual
level, the production of new tissues is the result of a
balance between the amount of food assimilated
(anabolism) and the amount of reserves consumed
(catabolism) (von Bertalanffy 1964). In an individual-
based software, it is possible to go further: the notion
that the reserves act as a ‘buffer’ can be implemented
at the level of each individual. If food is lacking, or sim-
ply insufficient, new tissues can be built by decreasing
the reserves (down to some point). The reserves are at
each cycle decreased by metabolism. For each zooid
emitted, reproduction also decreases the reserves by a
fraction of the adult weight.

Measurements shown in Madin & Deibel (1997)
make clear that, in every species of salps, growth
increments diminish with age. In a mature salp, growth
becomes null and the food assimilated is used for
metabolism and reproduction. In CALIFE, an individ-
ual is mature when it has reached the minimum age for
reproduction and its weight is greater or equal to the
minimum adult weight. The conjunction of these 2 con-
ditions ensures that small immature individuals, which
have not found enough food to reach a critical weight,
do not become reproductively mature.

Because of the very different adult weights of
oozooids and aggregates, different growth coefficients
are needed for these 2 categories. These coefficients
are not classical allometric coefficients (which, as we
have seen, do not apply to individual growth), but ad
hoc coefficients used to exponentially decrease the
assimilation efficiency of the growing individual. They
are named T_Ooz_Growth_Coeff (for the oozooid) and
T_Bl _Growth_Coeff (for the aggregate, or blastozooid).

The growth routine works as follows. FR, the food
requested (in computer jargon, a client ‘requests’
something from a server) by a zooid arriving at a
given location, is equal to its current weight W x
T_Food_Coeff. The zooid obtains FO < FR (possibly
0.0), according to the amount available at the location.
If the zooid is not mature:

(1) The Food Intake, FO, is transformed to Food
Assimilated, FA = FO x T_Food_Conversion_Coeff.

(2) An Age Index is computed, which is simply the cur-
rent age relative to the age at maturity (giving 0.0 at birth
and 1.0 at maturity). A Weight Index is computed simi-
larly for the current weight. These 2 indexes are aver-
aged, giving a Growth Index GI (constrained to GI< 1.0).

(3) The proportion of assimilated food which produces
new tissues is computed using GI so that it decreases as
age and weight increase. This gives the actual growth
increment: Wiye = FA x (1 — e ¥*Y)) with k = either
T_Ooz_Growth_Coeff or T_Bl_Growth_Coeff.

(4) If no or little food is found in the environment, the
above formula would give a zero weight increment. A

real salp may still grow in these conditions, owing to
the use of its reserves. To account for the reserves, a
potential growth increment Piyc is computed accord-
ing to the same formula, with FR instead of FO. Pin¢
represents the growth which would be achieved if the
food requested was obtained.

(5) If Wine < Pine, the missing amount Prye — Wine is
subtracted, if possible, from the current reserves. Other-
wise the current weight is increased by Wiyc, and the
difference FA — Piyc is added to the current reserves.

If the zooid is mature, its weight does not change,
and 20% (an arbitrary percentage) of FA is added to
the reserves. ‘

Experiments with the model using different food con-
ditions showed that the growth in weight of the artificial
oozooids and aggregates did not reach unrealistic levels.

Metabolism. Cetta et al. {1986) measured the oxygen
consumption of Salpa fusiformis individuals of different
weights; the relation seems to be linear on a log-log
scale, but important variability is apparent. To provide a
metabolic function for an individual in CALIFE, it is nec-
essary to know precisely how metabolism changes with
age in one individual. In the software, the daily metabo-
lism of oozooids and aggregates simply consumes a pro-
portion of the reserves. Metabolism includes excretion,
which is not coded as a separate function.

Death and decomposition. An individual dies either
when its natural longevity is passed, or if its metabo-
lism consumes more than its reserves. The death date
is stored in a reserved field of the record, but the inter-
nal clock still loops during a decomposition duration
(no actions are of course accomplished within the loop,
except downwards passive movements to simulate the
sinking of cadavers). When the decomposition dura-
tion is over, the individual disappears. The production
of cadavers was implemented in the software because
it is an important parameter for ocean flux studies.

PARAMETERIZATION

Reduction of the variability. To demonstrate the
resultant effects of various parameter values, very little
‘biological’ variability has been introduced in the soft-
ware. For example, the parameters setting the dura-
tions of the different phases of the development are
only maximum values. The actual length of these
phases may be shortened because of death by starva-
tion, or prolonged if maturity is delayed because the
adult weight is not yet reached. It would have been
easy to add normally distributed stochastic delays dur-
ing each developmental phase, to mimic more closely
the variability found in nature. But this variability
would have obscured the basic functioning of the pro-
gram when everything should be thoroughly checked.
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Table 2. Parameters used in the software. Values in the right column are those used in typical simulations (Figs. 3 to 5). They are
based on the available data for Salpa fusiformis, or else are the best guesses from several experiments with the software

Simulation parameters

2. Duration of the simulation (in cycles or ‘days’)
3. First zooid position: line (2 .. 27} in character mode or (2 .. 223) in pixel mode
4. First zooid position: col. (2 .. 79) in character mode or (2 .. 319) in pixel mode
5. First zooid swimming direction: (N, E, S, or W)

Life cycle parameters

For oozooids and chains:

6. T_Embryonic_Delay: duration of the phase between the zooid birth and its first move. If (7) = yes, this
duration (in days) will be random and (uniformly) distributed between 0.0 and T_Embryonic_Delay;
otherwise its (constant) value will be T_Embryonic_Delay

7. Random_Delay (yes or no)

For oozooids:

8. Number of chains emitted during the life

9. Number of aggregates (= number of individuals in a chain)
10. First chain emission, duration of blastogenesis (d)

11. Between-chains interval, for subsequent chain emissions (d)
12. Maximum age, i.e. oozooid longevity (d)

13. Duration of a cadaver before total decomposition (d)

For an individual in a chain (aggregate):

14. Oozooid emission, duration of oogenesis (d)

15. Maximum age, aggregate longevity (d)

16. Duration of a cadaver before total decomposition (d)

Food and metabolic parameters

17. Size of square food patches or '‘pavements’ (0, 1, 2 or 4). If (17) = 0, food will be present at each position
(except an empty centering area around the frame). If (17) > 0, food will be distributed in a (centered)
checkerboard pattern, with full pavements of size (17) alternating with empty pavements. Whatever the
value of (17), a central area of size 8 x 8 contains food in every position

18. Food value at each full position (ng-at. N, 0.0 .. 2000.0)

19. Scaling factor, F_Unit, for output of food values

20. T_Ooz_Adult_Weight: dry weight of an adult oozooid (in pg-at. N)

21. T_BI_Adult_Weight: dry weight of an adult aggregate (in pg-at. N)

22. T_Ooz_Initial_Weight: dry weight of a newborn oozooid when it leaves its parent chain (in png-at. N)

23. T_BI_Initial_Weight: dry weight of a newborn aggregate when it is emitted by the oozooid (in pg-at. N)

24. T_Ooz_Growth_Coeff: an empirically determined growth coetficient for the oozooid

25. T_Bl_Growth_Coeff: an empirically determined growth coefficient for the aggregate

26. T_Reprod_Cost_Coeff: proportion of (20) or (21) subtracted from the reserves during reproduction

27. T_Res_Min_Coeff: proportion of (22) or (23) corresponding to the reserves at birth. The minimum level
of reserves will be set to minus the amount of reserves at birth

28. T_Food_Conversion_Coeff: proportion of the daily ration transformed into reserves

29. T_Metabolic_Coeff: proportion of the reserves consumed each day by the metabolism

30. T_Food_Coeff: proportion of the current weight, which, if food is non limiting, but non clogging,
could be filtered in 1 d; may be > 1.0

31. Constant_Food: if yes any food removal by a zooid is replaced in the environment

1. Period of the zooids internal clock: duration, in seconds, corresponding to 1 cycle of a zooid (= 1 average 'day’)

1.5

112
160

0.2

8.0
3.0
18.0
6.0

12.0
20.0
6.0

Variable
Variable
1.0

52.0

26.3
3.0
1.5
1.70
0.80
0.20

5.00
0.60
0.06

1.60
Yes/No

Suppressing most of the variability has an undesir-
able effect; because many individuals move at the
same time, the scheduler (the element of the runtime
system responsible for the management of concur-
rency on a monoprocessor) is sometimes overwhelmed,
temporarily halting some individuals when they should
have moved. To obviate this effect, a small stochastic
delay may be introduced just after the birth of every
individual (parameter 6, Table 2). This is not unnatural
because not all offspring are emitted at the same time

during reproduction. This very slight desynchroniza-
tion of each individual at birth increasingly separates
the generations of zooids as the simulation progresses.
Moreover, competition is slightly lowered, because
there are fewer individuals trying to occupy the same
area quasi-simultaneously.

Biological and life-cycle parameters. The life cycle
stage durations of Salpa fusiformis (illustrated in Fig. 1,
and shown in Table 2) may be inferred from laboratory
rearing. Some caution should be exercised because salps
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are very fragile creatures, difficult to keep in an aquar-
ium: even very small perturbations may prevent the de-
ployment of their feeding mucous net (Madin 1974). The
durations established in Braconnot et al. (1988), taking
the median when a range is indicated, are used to choose
basic values. Shorter or longer durations obviously ac-
celerate or delay the development of the swarm.

Physiological parameters. A consistent unit is used
throughout the software, from the food found in the
environment to the amounts of reserves in the organ-
isms. The units of measurement found in the literature
often differ between authors. They were converted to a
common unit, microgram-atom of nitrogen (ng-at. N).
The C:N ratios used in the conversions are the ones
established for Salpa fusiformis by Cetta et al. (1986).

The names and initial values of the parameters are
shown in Table 2. These values represent the most
likely values resulting from a great number of assays
with the software. They may be considered as starting
points to refine a particular setting of a parameter, to
test a new hypothesis, or to re-evaluate another para-
meter in the light of new experimental evidence.

Initial and adult weights of oozooids and aggregates
(parameters 20 to 23) are values from Andersen
& Nival (1986), after conversion to pg-at. N. These
authors give only weight classes. For the initial
weights, I took the lower limit of their class I; adult
weights correspond to the mean value of the limit be-
tween their classes IV and V. However, the lower limit
of class I for the aggregate appeared far too low; using
their data, the ratio adult-weight:initial-weight would
be about 17:1 for the oozooid, and 239:1 for the aggre-
gate. The initial weight of the aggregate was corrected
to 1.5 pg-at. N to give roughly the same proportion to
the adult weight as for the oozooid.

Parameter 26, T_Reprod_Cost_Coeff, expresses the
metabolic cost of reproduction. The tentative value
chosen, 20 % of body N, is comparable to that found by
Madin & Purcell (1992) for Cyclosalpa bakeri. Increas-
ing this value would first lead to chains with fewer
aggregates and then may suppress the production of
chains, depending of the current level of reserves.

Parameter 27, T_Res_Min_Coeff, determines the
amount of reserves present at birth. An initial value of
5.0 (6 times the initial weight — not including the
reserves) was found adequate to represent these re-
serves. This parameter is also used to manage starva-
tion, without introducing a new parameter. If there is
no food in the environment, the organism first con-
sumes its reserves, which may eventually become 0.0.
Rather than declaring that the individual is then dead,
the reserves are allowed to become negative, up to
minus T_Res_Min_Coeff (which implies that they still
may be replenished if some food is again found). If this
point is passed, the individual dies.
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Fig. 1. Life-cycles of artificial tunicates. The horizontal direc-
tion represents time. Each horizontal line segment represents
a specific process associated with an individual. The diagram
shows an oozooid O which emits only 2 generations of chains,
C, and C,. Each chain, composed of only 2 aggregates, emit 2
oozooids (this is shown only for C,). Real Salpa fusiformis emit
up to 4 generations of chains, each composed of about 125
aggregates. The lengths of the different line segments are
proportional to the durations given in Table 2

Parameter 28, T_Food_Conversion_Coeff, is an
assimilation rate, the proportion of ingested N which is
transformed into reserves. This ingested N is propor-
tional to the current weight. Andersen (1986) found
that the assimilation efficiency of Salpa fusiformis
depends upon the nature of food, and is very variable,
from 28 to 81 %. A value of 0.60, intermediate between
the mean values found for diatoms and flagellates, was
tentatively set for this parameter.

Parameter 29, T_Metabolic_Coeff, is the proportion
of the N weight which is consumed daily by metabo-
lism. In the absence of an experimental value for Salpa
fusiformis, it was set to 0.06, the value found for Cyclo-
salpa bakeri by Madin & Purcell (1992). Experiments
showed that it is a very sensitive parameter.

Parameter 30, T_Food_Coeff, is an ingestion coeffi-
cient, the proportion of the current nitrogen weight fil-
tered daily. The value 1.60, the mean value for
oozooids and aggregates, was estimated from the in-
gestion rates given in Andersen (1985), after conver-
sion to pg-at. N.

Food distribution. In this version of the software, food
is initially distributed in space either uniformly, orin a
checkerboard pattern with alternating full and empty
patches. The geometrical checkerboard pattern was cho-
sen because it allows an easier assessment of the possi-
ble values of the parameters. For calibration, a random
distribution of food patches of various sizes would give
too much importance to factors such as the distance from
the first created oozooid to the nearest patch, the pro-
bability of any zooid finding a patch, or the patch size.
For the same reason, food is not renewed during the sim-
ulation, and it has no internal dynamics. The initial
amount of food can only be diminished by the zooids.

The diet of salps consists of living or detrital particles in
the range 1.0 ym to 1.0 mm. However, particles smaller
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than 0.2 pm are retained with low efficiency (Madin &
Kremer 1995). It is difficult to set a realistic value for the
food amount in the software, because the exact diet of
Salpa fusiformisis not known. Food in the software is ex-
pressed in pg-at. N. In spring in the Ligurian Sea
(Mediterranean), an averaged integrated value (on the 0
to 75 m column) of 23.3 mq of chlorophyll a per m? is ob-
served (Bustillos-Guzmén et al. 1995). This corresponds
to about 5000 ng-at. N in 250 m® (the volume of a grid
cell). This value should be divided by 25 to account for
the scaling factor for chains, giving 200 pg-at. N for pa-
rameter 18 in the software.

Given the physiological and life-cycle parameter val-
ues in Table 2, is this amount of food sufficient to result
in a healthy production of artificial salps, say, an
amount resulting in each oozooid emitting 2 chains per
generation, each with 5 aggregates (corresponding to
250 aggregates in the sea) per chain for most of the
zooids? Experiments performed by slightly changing
this food amount have shown that with the 2 x 2
checkerboard pattern, 200 pg-at. N is too high (the
computer memory is exhausted before 200 d), and with
the 4 x 4 pattern it is too low (the population is extinct
before 200 d). A medium food level, giving a moderate
swarm development, corresponds to 170 pg-at. N for
the 2 x 2 pattern, and 225 ng-at. N for the 4 x 4 pattern.

STOCHASTICITY OF THE MODEL

If 2 individuals head simultaneously for the same
position, the rules built in the Ada language lead to the
arbitrary selection of 1 of them. This is a fundamental
requirement of concurrent systems (Agha 1990, p.
132), but it introduces indeterminacy in the program.
This indeterminacy is of course increased by the ran-
dom changes in direction of the individuals. However,
even if changes in swimming direction are made deter-
ministic (for example by not using a random sequence
and making each individual turn clockwise every n
moves), the indeterminacy due to concurrency alone is
sufficient to make the location reached after a certain
time by a given individual unpredictable. If the simula-
tion is repeated with identical values of the parame-
ters, the detailed distribution of the individuals in
space will not be identical, because after repeated
competition for positions the individuals’ trajectories
differ. Also, the individual obtaining a position may be
a near-mature one with a lot of reserves, or a young
one that has not found much food previously.

This variability of individual paths is the only source
of variability in the model: all individuals of the same
kind (oozooids or chains) are created equal, with the
same initial weight and amount of reserves. Of course
a random normal distribution (or any other statistical

distribution) of initial weights and reserves could be
established. But the software model needs first to be
calibrated, and this added variability would obscure
the influence of the other parameters. This natural
variability may be introduced later. With fixed initial
weights and reserves, all the variability is a conse-
quence of the food distribution in space.

Even if the only source of variability is the random
encountering of food, it would be difficult to verify and
understand the basic model. Every modification of the
level of a parameter would need to be replicated a
large number of times in order to assess its corre-
sponding variability. This is not very practical for soft-
ware in which time is an incompressible number of
seconds elapsed. I eventually found an artifice to op-
tionally suppress the variability of the results, while
retaining the variability of the paths of the individuals
in space. If the 'Constant Food' option (parameter 31,
Table 2) is selected, the amount of food an individual
has removed for its daily ration is automatically
replaced in the environment. If 2 individuals occupy
the same position in quick succession, they each leave
the position with their ration, but the food remains arti-
ficially at the original level. The Constant Food option
initially distributes the food evenly over all the area, so
that the individuals find their daily ration every time
they move, irrespective of the actual positions they
pass through. The unavoidable variability of individual
paths is still present, but it has no effect on the food
obtained. The same amounts of offspring are pro-
duced, and the evolution of the population in time does
not depend on food availability. This Constant Food
option is useful to verify that the program operates as
specified, and to get the appropriate responses to para-
meter changes without stochasticity.

CALIBRATION

The calibration of this kind of model presents the
same difficulties as do mathematical models with many
parameters. A reasonable range can be established or
guessed for some key parameters (by inferences from
rearing experiments, data reported in the literature, or
some deductions). For the other parameters, it is only
possible to try some values and see what happens in
the simulation.

To determine a plausible value for each parameter,
the Constant Food option of the software is used first,
with the Constant Food level set in excess of the daily
ration (except for testing the food level itself). This
gives an upper limit for each parameter.

For the number of aggregates in a chain, and the
number of chains per generation emitted by an
oozooid, the Constant Food option allows us to check
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Fig. 2. Unlimited growth of the artificial tunicate population
when food is replaced as soon as it is eaten (Constant Food op-
tion set to Yes). Parameters of Table 2, except that each chain
emits only 2 oozooids, and each oozooid produces only 2
chains per generation; food is present everywhere with
170 pg-at. N in each position. The simulation ends after 96 d
because the computer memory is exhausted. ‘Days’ are simu-
lated days, each lasting 1.5 s of computer time. (—) Number of
live oozooids; (---) numbers of live chains present each day

easily the algorithm given above for the number of
00zo0ids produced. The emission of more than 1 chain
per oozooid generation has the effect of superimposing
a new exponential curve every time a chain is emitted.
Fig. 2 shows the exponential growth of a population
when there are 2 chains emitted by the oozooid, with
only 2 aggregates per chain, and an unlimited food
supply. Plateaus and dips are due to the asynchrony of
births and deaths of the individuals.

In the normal situation (when Constant Food = no),
the curves depart considerably from this theoretical
population growth: food varies in space, so the reserves
of a zooid may at times be so low that reproduction
(asexual or sexual) of the zooid does not occur. If chains
are emitted, they may be composed of fewer aggregates
than the specific maximum (parameter 9, Table 2). The
number of chains emitted by the oozooid may also be
less than the maximum possible. The resulting variability
thus reflects not only the basic alternation of zooid
generations, but also the fortuitous encounters with food
patches. Even if the food patches have strictly the same
position and contents, different simulations with iden-
tical parameters still give different numbers of zooids
produced during a bloom (Fig. 3). This is due to the in-
determinacy of the paths followed by the zooids.

The variability of the simulation runs was assessed
by doing 20 simulations with identical parameter val-
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Fig. 3. Results produced when food is not replaced. Food is

initially distributed in a checkerboard pattern (full patches of

size 2 x 2 positions alternating with empty patches of the same

size), with an initial value of 170 pg-at. N of food at each full

position. Parameter values of Table 2. Two 200 d simulations

made with exactly the same parameters are superimposed on
the graph. Only the oozooid counts are shown

ues (Table 2), for patches of size 2 x 2 containing
170 pg-at. N at each non-empty position. After 170 d,
the numbers of zooids produced, and the amount of
food consumed, show rather large variations (Table 3).
Again, since no individual variability of the zooid
characteristics (initial weight, metabolic parameters) is
introduced in the software, only the paths followed by
the individuals in space differ between runs.

In Fig. 3 another aspect of the variability is apparent.
Because the zooids must reach a minimum weight and
a minimum amount of reserves to reproduce, they do
not reach this condition after exactly the same dura-
tion. This difference in timing accumulates over the
generations. In Fig. 3, the 2 curves (corresponding to
initial oozooids created at time 0 in 2 different simula-
tions) are desynchronized after about 150 d, despite
the fact that both simulations have identical parame-
ters and food distributions.

The sensitivity of the model to small changes of the
metabolic parameters indicates that this is an area
where the functions coded in the model would need to
be improved. Real salps are adapted to a range of con-
ditions around optimal values, so that physiological
parameters should behave correctly within tolerance
limits. More laboratory experiments should be done to
find these limits, but to keep salps in a large tank poses
many practical problems.
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Table 3. Variability of 20 runs made with identical initial parameters. Parameter values shown in Table 2, with parameter 17 =
2 (food patches of size 2 x 2) and parameter 18 = 170.0 (ng-at. N). Statistics are computed for the cumulative numbers of zooids
created, and the percentage of food consumed after 170 d

No. of No. of oozooid No. of No. of chain % of food
oozooids cadavers chains cadavers consumed
Mean 415.9 324.4 3334 246.2 4914
Standard deviation 41.305 30.699 30.983 21.796 0.4031
Minimum 353 266 276 204 4,193
Maximum 503 369 413 278 5.637
RESULTS pavement size if the same initial amount of food

Spatial heterogeneity of food

With the various parameters set to plausible values,
the reproductive rhythm of the artificial salps produces
a swarm which spreads in space (Figs. 4 & 5). As every
individual moves autonomously in parallel with the
other individuals, screenshots made at different time
steps would not give a true idea of the dynamics of
what is displayed on the screen.

Fig. 4 shows the evolution of the salp population in
the presence of different sizes of the checkerboard
pattern of food. The advantage of this pattern is that
the overall amount of food is the same whatever the
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Fig. 4. Evolution of the artificial salp population (oozooids

only) with different food levels. Food is initially distributed in

a checkerboard pattern, with equal full cell alternating with

empty cells. (A) Cells of size 1 position x 1 position, initial food

value = 170 pg-at. N; memory is exhausted after 133 d.

(B) Size 2 x 2, 200 pg-at. N. (C) Size 4 x 4, 200 pg-at. N. Other
parameters as in Table 2

(parameter 18, Table 2) is set at each non-empty posi-
tion. Food thus differs only in the size of the food
patches.

With patches of size 1 cell x 1 cell (Fig. 4A), the inter-
patch empty areas (corresponding to periods of starva-
tion) are small enough to not significantly deplete the
individuals' reserves. In the presence of such abundant
food supply, the population rapidly expands. Few indi-
viduals die during the traversal of the empty areas;
when they become mature, the other individuals
reproduce, and their offspring colonize new areas. The
computer memory is exhausted after about 130 to
140 d because too many individuals are created.

With patches of size 2 x 2 (separated with gaps of the
same size), the population increases steadily; at each
generation a few more zooids colonize new patches
(Fig. 4B).
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Fig. 5. Example of spatial repartition of the zooids after 200 d
of simulation, corresponding to the final state of the simulation
shown in Fig. 4B. On the computer screen the actual size of the
zooid symbols is much smaller: each zooid is represented by
a colored dot 2 x 2 pixels wide (the zooid positions cannot
overlap). Surface is on top and depth toward the bottom.
(o) Non-mature live oozooids; (e) mature live oozooids;
(+) oozooid cadavers. (o) Non-mature live chains; (m) mature
live chains; (x) chain cadavers
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With patches of size 4 x 4, the situation is more criti-
cal. In some simulations the initial individuals do not
encounter enough food patches, and the population
becomes extinct. More often some critical mass is
reached, and there are enough successful individuals
to restart the development of the population (Fig. 4C).

These experiments show that, for an identical total
amount of food, small food patches separated by small
empty gaps are more likely to sustain salp swarms than
large but distant patches. Once a salp has found a food
patch and accumulated reserves by feeding on it, it has
to live on these reserves until it finds another patch.
With the parameter values of Table 2, the correspond-
ing optimal inter-patch distance is on the order of
2 positions, corresponding to about 2 km (horizontally).
An example of spatial distribution after 200 d is shown
in Fig. 5.

DISCUSSION
An agent-based model

The CALIFE software is a kind of individual-based
model (Huston et al. 1988), but one where no differ-
ential equations are computed for individuals with a
given state. It belongs to a category of agent-based
models where the individuals are autonomous entities
concurrently executing simple behaviors. They are re-
active agents (see Miiller 1996), rather than intelligent
agents (Steels 1995): they have no plan, no goal except
the satisfaction of their immediate needs. They move
randomly; when they discover food, they feed; other-
wise they grow, metabolize, and reproduce. These
simple reactive agents are appropriate to model inver-
tebrates which do not cooperate.

Space

The spatial extent of the salp swarm is first related to
the swimming capabilities of the individuals, the way
they change their swimming direction, and also to the
persistence of their reserves when they are starving. The
software model may give some clues on these factors.

In CALIFE space is only represented with a 2-dimen-
sional grid of cells. The extension to a 3-dimensional
volume is not basically a difficult programming prob-
lem (just add a third coordinate, and modify accord-
ingly the procedures related to moving). The resulting
huge memory requirements could be reduced with a
sparse matrix approach. A special graphic hardware
would be necessary to visualize in real-time the posi-
tions of the zooids in perspective view, with hidden
parts removed. In 3 dimensions, an individual would

have 26 possible directions instead of 8. It is not obvious
whether this 3-dimensional view would provide a much
better understanding of swarm development, but with
the necessary hardware this approach can be tried.

Food

Food in the ocean is distributed in patches. Salps are
very effective filter-feeders (Madin & Kremer 1995).
Swarm production is their response to favorable
trophic conditions. Because salps are explosive repro-
ductive machines, they are able to quickly exploit any
food patch they may encounter. These encounters are
probably random, but any food patch encountered by a
‘lucky’ individual is fully exploited by its offspring.
This explains why the swarm extent may be so variable
(see Fig. 3).

Because salps survive in their unpredictable en-
vironment generation after generation, it may be
inferred that their biological characteristics have been
tuned by evolution to cope with this changing environ-
ment. However, the swarm contains the germ of its
extinction because, unless food is continuously regen-
erated (as in an upwelling area), the population must
reach another rich patch when the current one is
exhausted. To exploit an oceanic area successfully,
individuals should be able to survive between patches.
CALIFE does not presently model the temporal aspect
of food renewal, but its layout makes it adequate to
illustrate the spatial aspect. )

In this version of CALIFE, I decided not to implement
food renewal dynamics. Not because of technical prob-
lems (a periodic task may update the food content of
each cell, according to some function of the amount of
food present, the date, or the depth), but because this
would quickly lead to a model of a precise ecological
situation. For example, food could be unevenly dis-
tributed, matching some spatial pattern. This spatial
heterogeneity would, in turn, demand a knowledge of
the fluxes from and to the adjacent areas. The parame-
ters of the food renewal function could incorporate the
rate of cell divisions of phytoplankton, etc. In the pres-
ence of renewed food, the individuals would prolifer-
ate exponentially, so their metabolism needs to be very
precisely adjusted. For this version, it was judged sim-
pler to depict a homogeneous area, with a fixed initial
mean amount in each elementary volume correspond-
ing to 1 position.

Simulation software

CALIFE is not strictly speaking a simulation software
in the sense of this term in engineering. In industry,



14 Mar Ecol Prog Ser 154: 1-16, 1997

simulations are replicated runs of a model where
events are generated according to some adequate sta-
tistical distributions. The aim of such simulations is to
obtain an estimate of the variability of the parameter
values of a model under some constraints, to see the
outcome of the input values. In CALIFE the emphasis
is more placed on the design of the model. The runs of
the software serve mainly to see if the conceptual
model 'works’, or whether something needs to be mod-
ified to reflect more faithfully salp swarms in the
ocean. When some confidence is obtained that artifi-
cial salps are behaving like real salps, it will be pos-
sible to customize the software to answer precise eco-
logical questions, making it a true simulation software
with statistical distributions of the parameters.

CALIFE in its present state could be tailored to
answer questions such as: are salps able to detect food
at distance (and, if yes, at what maximum distance?);
what happens if they are able to modify their swim-
ming direction toward food; how long are they able to
swim without food, and so on.

Validation of the model

A model consisting entirely of a software architec-
ture is not amenable to the same validation techniques
as models which can be validated against field data
(Rykiel 1996, Coquillard & Hill 1997). What should be
validated first is the conceptual model at the basis of
the software design. Field data are usually not ade-
quate. In oceanic samples, it is not possible to be sure
that the same population was sampled each time; there
are some missing data due to bad weather (even in
such a protected sampling place as the Bay of Ville-
franche); this is further worsened for salps by the fact
that chains are not well sampled as their length is of
the order, or greater, than the plankton net opening.
Moreover, chains break naturally when they age,
increasing their spatial dispersion (a phenomenon not
simulated in the software). They also break in the net
and when formalin is added to the sample. All that can
be counted in samples is the number of aggregates, not
the number of whole chains (whereas the program
gives the number of chains).

One of the first requirements for comparison with
field data would be to find a high-frequency time
series of Salpa fusiformis counts (oozooids and aggre-
gates). Such small-scale data are not available in the
literature, and even the unpublished series referred to
in the 'Space’ section above is too coarse. Moreover,
the corresponding prevailing food conditions are not
known.

However, as Rykiel (1996) has shown in an illuminat-
ing discussion, when field data are extremely difficult to

obtain with the required precision, a computer model
may still be very useful. What is important is to see if the
purpose of the model is fulfilled. The purpose of the
CALIFE software model is to allow a biological oceanog-
rapher to experiment with artificial salps, taking space
and time into account, as well as a great deal of biologi-
cal information. The visual display of the developing
swarm helps the oceanographer to examine hypotheses
such as what happens if there is one more generation of
00zo0o0ids, if aggregate maturation is shorter, or if food is
distributed in distant patches. Of course, as in any model,
many variables are only sketched in or are completely
missing. But if, for example, the influence of clogging of
the salp mucous filter is the subject of interest, this new
parameter can be added to the feeding algorithm with a
little programming effort, and different levels of clogging
may be simulated.

The 'lucky individual' effect (see the ‘Calibration’
section) is amplified by the explosive reproductive po-
tential of salps. Swarm development is strongly contin-
gent. It depends on an opportune coincidence between
favorable local trophic conditions and a few individu-
als in an adequate state. The model can be very useful
at determining what should never be observed, given
some parameters: if such a situation occurs in the
ocean, then the model is clearly invalidated, and the
software must be modified.

Artificial salps are not the real creatures. They are
only model organisms, containing selected features
deemed pertinent in our current knowledge about the
biological reality. This knowledge is put into action by
running the software. Because the algorithms execute
concurrently in all individuals, it is possible to observe
the results of individual dynamic interactions in time
and space. This is something which cannot be dis-
closed with mathematical equations.

CONCLUSION

As experimental devices, mesocosms have many ad-
vantages (Drake et al. 1996); care should however be ex-
ercised when extrapolating to the field (Carpenter 1996).
I cannot resist quoting a concluding remark from Drake
et al. (1996): 'Finally, we issue a call to ecologists to con-
sider all avenues of inquiry, whether those avenues re-
quire a laboratory coat, a computer, or a pair of boots.’

In a virtual mesocosm there is no space limitation.
This extension in space may easily induce one to think
of the virtual mesocosm as a virtual ecosystem. How-
ever, this is a big conceptual leap. I prefer to regard
this software as modeling a very large container, filled
with artificial seawater seeded with axenic food,
where a salp swarm develops. It simulates a kind of
large laboratory apparatus, where time runs faster. It is
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convenient to tune physiological parameters, to ex-
plore different generation times hypotheses, to see the
effect of starvation, or how food may be exploited. In
the ocean, the dynamics of salp swarms depends on
local spatial conditions (currents, hydrological bound-
aries). To test hypotheses for a given oceanic area, the
virtual mesocosm should be turned into a scale model
of this area. Precise food values may be very difficult to
guess, but different scenarios may be tried.

In its present state, CALIFE is not written to solve a
specific problem about tunicate ecology. Further adap-
tations, for example to study questions such as how a
population of Salpa fusiformis may be regulated in the
frontal zone of the Ligurian Sea, are a further en-
deavor, which asks for the insertion of domain features
(like a ‘hydrological front’ object). The CALIFE basic
structure is flexible enough to incorporate these spe-
cializations.

The main use of a software model like CALIFE is, in
my opinion, the observation of the behavior of the con-
ceptual model once translated to software specifica-
tions. An unexpected behavior may either indicate an
inadequacy in the conceptual model, or may lead to
new experiments or field observations. This is not dif-
ferent from what is done with mathematical models.
The advantage of a software architecture is that it
incorporates more biological knowledge, and it is free
from the simplifications of mathematical models (limi-
tations to a small number of parameters, sequential
processes only, no complex spatial factors).

Work is under way to add an artificial crustacean to
CALIFE, simulating the amphipod Vibilia armata
which lives on tunicates as a parasitoid. Future devel-
opments include: rewriting the software in Ada 95 to
take advantage of the truly object-oriented features
and the improved concurrency facilities of the lan-
guage; making the environment and the food dynamic
to simulate what happens in a frontal zone; and adding
another tunicate species Thalia democratica to study
its competition with Salpa fusiformis.
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