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Abstract

The HOOD (Hierarchical Object-Oriented Design) methodology, established for software engineering purposes,
may be applied to decompose an ecosystem into a hierarchy of entities. Self-reproducing artificial organisms
(software entities “living” in the computer memory) may populate the system, allowing to simulate the development
of a planktonic population. The artificial creatures exist and move in asynchronous parallelism. Feeding, which was
absent in the previous model, permits a regulation of the population growth. Space is an essential reference to be
taken into account, because food and other resources are only found at certain locations. Space in turn is also a
resource, which should be managed in the software. In the HOOD design, the space object is included in a larger
conceptual object, the Environment object. This higher-level object contains a “control object” managing the
concurrent access to the resources, as well as the resources themselves. The introduction of spatialized food
resources, consumed by the population of artificial organisms, allows a more realistic simulation of the colonization

of space by “blooming” pelagic organisms.
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1. Introduction

In marine pelagic ecosystems, salps (Tunicata:
Thaliacea) constitute a group of filter-feeders
which, at certain periods, may be predominant.
Their importance has been recently reviewed by
Fortier et al. (1994). These authors stress the role
of salps in the lengthening of carbon turnover
time, and make the hypothesis that “the capacity
of these large microphages to swarm explosively
allows them to control phytoplankton blooms”.

" Fax: (+33) 93-763834.

They also remark that “the actual biotic or abi-
otic conditions triggering thaliacean swarms are
poorly understood”. It is therefore useful to try to
model the explosion of salp populations.
Equations representing salp growth have al-
ready been introduced in classical modelling G.e.
based on differential equations) of pelagic ecosys-
tems (Andersen and Nival, 1986; Braconnot et
al., 1988). However, these kinds of models cannot
take into account the complexity of the multiple
interactions occurring concurrently in ecosystems.
In a previous article (Laval, 1995a), it was shown
how a software engineering method, HOOD
(Hierarchical Object-Oriented Design), could be
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used to construct the framework of an object-ori-
ented ecological simulation, with artificial organ-
isms as lower-level objects. These organisms were
simulated Tunicates, represented with self-repro-
ductive concurrent software units, “living” in the
computer memory. To simulate the complicated
mode of reproduction of salps, a population is-
sued from one initial individual by alternation of
sexual and asexual reproduction grew explosively
in the computer memory. A Space Management
object provided a referential for the organisms
and algorithms for their movements. Objects
(clock, counters) needed by the modeller to launch
and stop the simulation, and to observe what
happened, were included in the design. All ob-
jects were arranged in a hierarchical framework
representing a simulation of a minimal ecosys-
tem.

This minimal design was sufficient to demon-
strate how the HOOD method could be applied
to an ecological model. One obvious shortcoming
of the corresponding version of the software
(CALIFE version 3.40) was that the artificial pop-
ulation, developing without constraint at an expo-
nential rate, invaded eventually all the available
space. Like any natural population, the artificial
organisms have to have growth limitations if they
are used in an ecosystem simulation. Food and
other resources should also be introduced in the
design, and these “objects” must be seamlessly
integrated in the existing framework. This paper
explains how space and resources may be in-
serted in the CALIFE hierarchical object model.

2. What is space, from an object-oriented mod-
elling point of view?

In an object-oriented design, each object is an
entity which has a state, a behaviour, and an
identity (Booch, 1987, 1991). An object may be a
real or an abstract entity. The HOOD method
(Delatte et al., 1993) hierarchically decomposes a
system in less and less abstract objects, starting
from a “root object” which is an abstraction of
the entire system. At the bottom of the hierarchy
most objects represent real-world entities. This
hierarchical decomposition is appealing to ecolo-

gists, who are well aware of the hierarchical orga-
nization of ecosystems (see for example Odum,
1988; Costanza and Hannon, 1989; Kirsta, 1994).

The word space conveys two meanings: one is
space as a geometric referential; the other is
room for something. From an object-oriented
programming point of view, in the first meaning
space is not an object: it is an attribute, a poten-
tial property of some objects (Booch, 1991, p. 77).
However, in the meaning of “room available for
the movements of organisms”, it is conceivable to
introduce a Space object. This object would con-
tain a representation of the available positions in
the system. The occupancy of these positions
constitutes the object internal state.

In a computer simulation the Space object
should also be mapped to a display device, which
is an unavoidable object required by the simula-
tion, in the same way as observation requires an
observer. To visualize the course of the simula-
tion, each occupied space position corresponds to
the display of a code at a computer screen posi-
tion.

In the CALIFE software, space is bi-dimen-
sional. The extension to 3 dimensions is straight-
forward but computationally intensive, with large
memory requirements. For the present state of
development, a bi-dimensional model is already
useful.

3. Mutual exclusion

One originality of the CALIFE software is that
organisms behave in parallel: each individual con-
tains its own set of states, driven by a local
“internal clock”. If two organisms try to update
simultaneously the same resource, one of them
should have exclusive access to the resource dur-
ing the update, otherwise the amount of the
resource would be incorrectly assessed by the
second organism. This is the well-known “mutual
exclusion” problem found in any concurrent soft-
ware (see for example Booch, 1987, p. 190).

From the point of view of concurrency, space
should be accessed in mutual exclusion because
two organisms cannot occupy simultaneously the
same position. However, two organisms occupy-
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ing close but distinct positions may ask for the
value of some physical characteristic at the same
destination point; in this case mutual exclusion is
not needed. However, if both “decide” to move
to this place, mutual exclusion is needed, and
only one of them will get the place.

4. Space as a resource, and a resource of re-
sources

In our first approach (Laval, 1995a), space was
viewed mainly as a geometric referential. The
introduction of spatially distributed food leads to
a deeper examination of the kind of things which
are spatially distributed in an ecosystem. From an
organism’s point of view, three categories may be
distinguished.

4.1. Physical characteristics

Temperature and salinity are obviously spa-
tially distributed. These characteristics cannot be
changed by the organism (at least at a granularity
much larger than the organism size); their level
remains the same with or without the presence of
the organism. In computer jargon, they are read-
only resources: at a given position, an organism
can only inquire as to their level. This level may
be different over space, but also over time. It is
easy to see how physical characteristics may be
dealt with in an object-oriented model. An organ-
ism in any point of the space-time continuum
may use a function of the Space object returning
the needed value. This function could be based
on a previously established model, or a database
of observations.

Physical characteristics in pelagic ecosystems
are vertically oriented: “Oceans and lakes are
anisotropic environments. Their ecosystems are
organized along the axis defined by light and
gravity.” (Margalef, 1979). Light is not a parame-
ter in the current version of CALIFE, but if
necessary it could be introduced in the same way
as other physical characteristics. Gravity is impor-
tant when weight is dominant over viscosity, and
when turbulence has no appreciable upward com-

ponent. In the CALIFE Tunicate simulation,
gravity accounted for the sinking of cadavers.

In the meaning of “room available”, space
itself is a physical characteristic, with a particular
property: once occupied a position is unavailable
for other organisms. All the resources present at
that position are locked for the other organisms.
Except where room is a scarce resource (e.g.
benthic environment), there is properly speaking
no competition for space itself; the competition is
for the control of resources present at points of
space.

4.2. Exploitable resources

If a resource is exploitable by an organism, at
a given position the level of the resource may
decrease during the residence time of the organ-
ism. Exploitation of a resource is an interaction
between the occurrence and level of the resource,
and the organism’s need (internal state) for that
resource. After the interaction, the internal state
of the organism is modified.

In pelagic ecosystems, biological resources such
as food have their own dynamics: planktonic prey,
phytoplankton, microzooplankton, bacteria, all
reproduce (and die). They are renewable re-
sources. The interaction of an organism with a
renewable resource does not irreversibly reduce
or exhaust the resource.

4.3. Deposited resources

Some resources may be absent when an organ-
ism arrives at a given position, and produced or
left by the organism when it leaves the position.
They originate from the organism’s metabolism,
and thus come from an exploitable resource found
elsewhere (or earlier) by the organism. In the
ocean, this is the case for dissolved organic mat-
ter, or faecal pellets. An organism may be viewed
as a temporary buffer, able to sequestrate some
resource, which may be released elsewhere (or
later). It may also be a transformer of a resource.
These resources resulting from the metabolism of
other organisms may in turn become resources
for other organisms in the trophic food web.
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5. HOOD design of space and resources

We may now set up the specification and role
of a hierarchically organized object containing
the different kinds of resources discussed above.
The name Environment captures the meaning of
this hierarchically organized object better than
Space_Management (the name used in CALIFE
vers. 3.40). Unfortunately, in the HOOD termi-
nology, the name ‘“environment object” stands
for another system software incorporated in a
design (Delatte et al., 1993, p. 31); in ecology,
however, environment has a well-established
meaning which should prevail here. This high-
level object must account for the organization
and role of spatially distributed resources, and
also must solve the technical problem related to
the concurrent access to these resources.

The Environment object should thus contain
(1) child objects representing the different kinds
of spatialized resources, and (2) a control object
mediating the concurrent access to these re-
sources, and solving the mutual exclusion prob-
lem.

The design of the Environment object may be
captured in a HOOD diagram (Fig. 1). This dia-
gram should replace, and is a refinement of, the
Space_Management object in fig. 1 of Laval
(1995a). The child objects in this diagram are as
follows.

5.1. The resources objects

5.1.1. The Space object

The Space object encapsulates a local array
(X,Y) of positions. These positions contain spe-
cific codes indicating if a certain kind of organism
is present or not. At the specification level, only
two subprograms are needed to inquire what is
present, or to change the code, at a given posi-
tion.

At the implementation level, these two subpro-
grams may be tied to any appropriate means to
access the video hardware, either a graphic li-
brary providing these two functionalities, or two
Ada interfaced assembly routines. In the current
version, a simple memory address mapping to the
CGA video memory has been used instead. This
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Fig. 1. Simplified HOOD diagram of the Environment object.
The Space CTRL object contains an array of tasks (shown as
small parallelograms; HOOD has no graphical representation
for tasks). Each task is responsible for a region of space
(corresponding to the numbers 1, 2, 3...). Salp_Food is an
instantiation of a generic Food package (not shown); the
stippled object “Other_Resource” indicates that other re-
source objects may be instantiated as well. Objects may only
use the routines figuring in the interfaces boxes of the other
objects at the same level. To simplify the diagram, the subpro-
grams or functions made visible in the interface boxes of
Space and Salp_Food are not detailed. The A in the upper
left part signals that Environment is an “active” object (in the
HOOD terminology), i.e. an object which manages the com-
munications between its child objects.

is a very portable solution, with no memory
penalty (the space array is the video memory
itself); the software may thus run on any personal
computer, but with the drawback of limiting the
space to a 25 X 80 array. Using pixels of different
colours to display the organisms, instead of dif-
ferent ASCII characters, would allow the use of a
640 x 480 space on very common VGA video
boards, and up to 1280 X 1048 on more advanced
systems, without any change at higher levels of
the program.

5.1.2. The Salp_Food object
Because food is a spatialized resource, a food
object should also contain an (X,Y) array, whose
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locations correspond to those in the array con-
tained in the Space object. There should be spe-
cific food objects representing different kinds of
food. Objects with similar behaviours constitute a
class (Booch, 1991). A class Food is expressed in
Ada with a generic package. This generic Food
package contains a function, Inquire_Food, re-
turning the amount of food present at a given
location, and a procedure, Update Food, which,
given a certain Amount Requested, returns
Amount_Delivered, updating the amount present
at the given location. Salp_Food is the name of
the generic instance relative to the Tunicate or-
ganisms modelled in CALIFE. Other food objects
are not yet introduced in the current version of
the software (4.50), but may be easily added by
instantiating the Food generic template.

In the present version, food is a non-renew-
able resource: different initial amounts of food
exist at given space positions, where they may
only be decreased by Tunicates.

5.2. The control object

5.2.1. Concurrent access to resources

The control object manages all concurrent re-
quests, either for food resources located at the
same (X,Y) position, or for space occupancy it-
self (i.e. a location in the video memory) when
two or more organisms need to be displayed.

Every move to a location passes through a
controller, which serializes (serves one after the
other) concurrent requests for the same location.
This controller is an Ada task. Using one con-
troller task for the whole spatial domain is clearly
inadequate: with a personal computer with only
one CPU, one task cannot queue, process, and
dequeue all simultaneous requests when the or-
ganisms are very numerous. Experiments have
shown that this results in freezing the program
(Laval, 1995b). On the other hand, using as many
controllers as locations would be impracticable:
each Ada task has an associated overhead (in
memory and processing time) which is not negli-
gible. The solution lies in-between, with a man-
ageable quantity of controllers each responsible
of a small region of space. To evaluate this quan-

tity one can consider the worst case, when there
are moving organisms in almost each location, all
willing to move (as may be the case at the peak of
a bloom). With the present configuration, each
controller deals with at most 72 requests, a limit
which has proved satisfactory. Controllers are
arranged in an array in a “control object”, named
Space_ CTRL according to the HOOD terminol-

ogy.

5.2.2. Concurrent moves

In the CALIFE software, besides the con-
troller tasks, Ada tasks are also used to imple-
ment the behaviour of the organisms. Each or-
ganism has an attached individual task (Laval,
1995b). Moves, reproduction, physiological func-
tions, are accomplished inside this task. For short,
in the following I will name “zooid” every moving
organism (live and dead oozooids, live and dead
chains). Cadavers are represented in CALIFE
because they make an important contribution to
the flux of organic matter in the ecosystem. Dead
zooids continue to move (they sink, i.e. they move
vertically downward) until their complete decom-
position.

Zooid moves simulate Tunicate movements. A
rather complicated algorithm is used to find an
available position for a move. When a position is
occupied (by another zooid or by an obstacle), a
position at 180° from the current direction is
sought. This mimics the behaviour of oozooids
and chains, which reverse their swimming direc-
tion when they bump to an obstacle (Bone and
Trueman, 1983). If the position in this opposite
direction is also occupied, the position in a slightly
(1/8) differing direction is tried, and so on.

When a moving organism enters another re-
gion of space, its request for a free position is
handled transparently by the control object: the
latter simply directs the request to the controller
task in charge of the new region.

5.2.3. De-synchronization of moves

Every zooid moves or reproduces at fixed
points in the internal loop inside the task repre-
senting its behaviour. This results in quasi-syn-
chronous moves of all the zooids, giving an unnat-



118 Ph. Laval / Ecological Modelling 88 (1996) 113-124

ural jerky aspect to the simulation. Moreover, if
all moves occur simultaneously, the controller
tasks are likely to be overwhelmed when the
zooids are numerous. To smooth the controller
requests and the occurrences of moves, a very
small variable lag is introduced before each re-
production (sexual and asexual). This is done
with a random delay between 0 and 200 millisec-
onds. On the Ada tasking side, this delay has the
advantage of adding a supplementary synchro-
nization point (synchronization points allow the
scheduler to switch to another task).

5.2.4. Problems of scale

Moving organisms explore the available space,
consuming food if it is present. The production of
chains allows them to successfully exploit food
patches. The results attained so far realistically
suggest the spreading of a real population: bursts
of oozooids hatch from chains, move and feed,
full grown zooids turn into cadavers, cadavers
disappear after a decomposition duration, and so
on.

Swimming movements are accomplished at ev-
ery beat of the internal clock, every 1.0 second.
This duration was found adequate to simulate the
rather slow swimming of salps. It allows enough
time to schedule the movements of the other
organisms swimming concurrently. It may be set
to a different value via the configuration file, but
not a too different one. A value of 0.1 s is still
possible, but salps then swim like rockets. A
longer value, say 5.0 s, leaves the salps immobile
most of the time. Their life cycle is also delayed
by the same factor, so that the simulation takes
much longer. It is important to note that individ-
ual movements and life cycle phases do not share
the same time scale. However, in a model it is not
necessary to represent every scale faithfully; what
is important is to allow each organism to search a
“representative” sample of the available space.
This space is in turn not the real space available
to a real salp population. It is a very limited area
used to represent it on a computer. In character
mode, this area contains 1216 positions. An ac-
ceptable trade-off, found by trial and error, was
to allow each zooid to explore about 1/40 of the
available space during its life. At 1 position ex-

plored each second, this corresponds to a mean
longevity of about 30 s.

6. Feeding

With the introduction of a Salp_Food object,
feeding and some of its effects on reproduction
can now be simulated. This is done by means of a
local variable (different for oozooids and chains)
in each Tunicate task. The state of this variable
represents the current level of the Tunicates’
internal reserves. Each Tunicate is created with
an initial amount / of reserves, representing the
reserves present at birth in the eleoblast (Brien,
1948). Chains, representing the collective be-
haviour of N aggregates, contain N times the
amount of reserves found in every aggregate (to
simplify, initial food reserves and food require-
ments of aggregates and oozooids, which have
roughly the same size, were made equal). Repro-
duction costs the equivalent of the metabolism of
R food units to the reserves, and may only take
place if the current reserves are greater than the
amount corresponding to the metabolism of R.
For the experiments, R was set so that the cost of
reproduction corresponds to I, that is, the initial
amount is just insufficient to permit reproduc-
tion. Food requirements for an individual are set
to the amount R necessary for reproduction: if
available at the position reached by a Tunicate,
an amount of up to R food units will be removed
from the environment. This amount is subtracted
to the Salp_Food object (which is updated in
mutual exclusion) at the corresponding position,
and added to the local reserves of the Tunicate.

In CALIFE vers. 3.40, the swimming direction
changed by 1/8 every 8 moves, to mimic the
swimming in large circles of real Tunicates (Laval,
1995b). To add some strategy to the food search,
in the present version this change is made every 4
moves if the level of resources is greater than 6
units (that is, when the organism is “satiated”),
and every 8 moves otherwise (when it is
“hungry”): the swimming circles are tighter when
there is food, so that the organism stays closer to
the food.
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7. Computer implementation

The CALIFE program was developed with an
Alsys 386-DOS Ada compiler and environment
on a 80386 (20 MHz) micro-computer (Laval,
1995a). The version 4.50 of the software repre-
sents about 4000 lines of Ada (including 1500
lines of comments), not counting the utility li-
braries (about 2000 lines of code). The source
code of the program is available upon request
from the author.

This version is implemented in character mode.
The zooids move in a 22 lines X 78 columns space
(line 24 is used for displaying the elapsed time
and for various messages, and line 25 for user
prompts; a frame occupies lines 1 and 23, and
columns 1 and 80). For this 22 X 78 “swimming
area”, a 3 X 10 array of controllers has proved
adequate: the overhead introduced by the 30
supplementary tasks is tolerable, and sufficient to
manage the simultaneous presence of about 300
zooid tasks occurring at the bloom peak.

8. Results

An initial parameters setting (Table 1) was
established with values comparable to the ones
found for Salpa fusiformis, one of the most com-
mon species in the Ligurian Sea, Mediterranean
(Braconnot et al., 1988). In the sea, the number
of aggregates per chain in this species is about
100, a number which would very quickly fill the
available space on the computer. This number
was set to 3, a value sufficient (because of the
exponential growth) to start up a small popula-
tion bloom. Twenty runs were made with this
configuration, that is, with the same initial posi-
tion and swimming direction for the first oozooid,
the same life cycle parameters, etc. The same
food configuration file was used (Fig. 2). In all
experiments, all the food was eventually con-
sumed, except at 1 or 2 locations in a very few
cases.

Despite the identical starting configuration, the
total numbers of 0ozooids and chains produced is
markedly different from one run to the other. To
dismiss the objection that this could be attributed

Table 1
Initial parameters setting for the experiments with the ran-
dom delay suppressed (Fig. 3). Durations in seconds

Simulation duration 140.0
Number of chain generations 2
Number of aggregates per chain 3
For oozooids:
First chain emission 5.0
Interval between chains 4.0
Longevity 12.0
Cadaver persistency 6.0
For chains:
Qozooid emission 6.0
Longevity 20.0
Cadaver persistency 6.0

only to the presence of the random delay intro-
duced before each reproduction (Section 5.2.3), a
first test was made with this delay suppressed
(more precisely with a delay of 0.0 second, which
preserves the synchronization point). The results
were still variable, with a coefficient of variation
(standard deviation/mean X 100) of 4.28% for
the oozooids and 4.92% for the chains. Moreover,
the curves of the numbers of oozooids produced
(and chains, not shown) were widely different
(Fig. 3). The total number of 0ozooid and chains

#10 B30

Fig. 2. Initial amounts of food used for all experiments. Food
is present in the upper right part of the screen, with amounts
of 10 or 30 units at each shaded position. X and arrow: initial
position and swimming direction of the first created oozooid.
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Fig. 3. Two widely different outputs from 20 runs with the random delay disabled (set to 0.0). Three aggregates per chain. Only the

numbers of oozooids produced are shown.

produced may almost double in some runs com-
pared to others.

With 5 aggregates per chain, instead of 3, the
exponential growth of the population is more
apparent: each chain may be seen emitting
clutches of 5 oozooids, each of them giving new
chains, etc. Introducing a random delay before
each reproduction smooth the simulation, and
spreads out the work of the scheduler. The coef-
ficients of variation of the numbers of zooids and
chains produced are of the same magnitude than
with no random delay (4.09% and 4.89%).

Setting the initial oozooid position and direc-
tion so that this oozooid is bound to encounter a
rich source of food was a way to repeatedly
produce blooms. Providing a more oligotrophic
environment (Fig. 4) shows how the explosive
reproductive strategy of salps allows them to nev-
ertheless exploit these poorer conditions. Going
from patch to patch, the population is able to
spread each time it meets a favourable environ-
ment. In the experiment shown in Fig. 5, the
population first invades the right part of the
space (Fig. 5A). A number of chains are pro-

duced, which, together with the newborn
00zooids, eat all the food present locally. Then a
few individuals reach some food patches in the
left side, where they also reproduce explosively
(Fig. 5B). At the end of the simulation, almost all
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Fig. 4. A patchy, oligotrophic, environment provided for the
experiment in Fig. 5. Conventions as in Fig. 2.
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the food is consumed. For this experiment, the
durations of the life cycle parameters were those
of Table 1, multiplied by 2 to obtain a mean
longevity of about 30 s.

9. Discussion

The numbers of zooids produced by the CAL-
IFE program resemble times series obtained from
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Fig. 5. Development of an artificial salp population in an oligotrophic environment (see Fig. 4). (A) After 90 time units, some
zooids encountered food patches in the right part of the area, and the population begins to multiply. On the far left, the 5 oozooids
released by a chain may be seen close together. (B) After 180 time units, the population has invaded the left part of the area. The
population is less dense in the right part, because all the food was consumed here, and before dying the older individuals were not
able to reproduce. Live oozooids are represented by the character “O”, oozooid cadavers by “®”, live chains by “§”, and chain

cadavers by “@”.



122 Ph. Laval / Ecological Modelling 88 (1996) 113124

plankton samples (see for example fig. 5 of Bra-
connot, 1971, p. 270). The large variability from
one run to the next does not detract from this
impression. However, sampling intervals of plank-
ton data are usually wide (at best one or two
samples per week), and there are many causes of
bias (due to sampling in different water masses,
net clogging, inadequate mesh size, etc.), so that
a comparison is difficult. The spatial aspect seems
also representative of a real salp bloom: the ob-
servation of blooming salps from submersibles
(personal observations) shows that chains may
then be close together, presenting a picture quite
similar to the program output,

Even with fixed initial amounts of food at
predetermined locations, and an oversimplified
food chain reduced to one filter-feeder and its
food, some complexity is readily apparent in the
model output. No successive runs (with identical
parameter settings) gave identical results, an out-
come which may disconcert modellers used to
sequential programs. The ranges obtained, how-
ever, are well within biological bounds. The un-
predictable paths followed by the individuals re-
sult from their asynchronous behaviour and the
numerous changes of swimming direction they
make to avoid collisions with each others. These
different paths lead them to different regions of
space, where the amounts of food may be differ-
ent. At these locations they accumulate different
amounts of reserves, which govern their repro-
ductive success.

The variability of the numbers of oozooids and
chains produced by the program helps to explain
how a successful exploitation of the casual occur-
rence of food material may arise. Salps such as
Salpa fusiformis have a filtration rate of about 0.3
1 h~! per individual (Andersen, 1985). A chain of
100 aggregates may thus filter 30 1 of water per
hour. An 00zooid reaching a place where food is
abundant gives birth in a few days to a chain of
100 aggregates (Braconnot et al., 1988). These
100 aggregates, if there is enough food, will in
turn give 100 oozooids. S. fusiformis travel at
mean velocitics between 1.3 and 6.6 cm s~ ! if
they are not feeding (Bone and Trueman, 1983).
S. aspera, a related species about the same size as
S. fusiformis, may undergo daily vertical migra-

tions of 800 m (Wiebe et al., 1979). The strategy
of space occupancy of the non-migrant salps
seems more or less reflected by the CALIFE
software: moving in circles until food is encoun-
tered, and then spreading by explosive multiplica-
tion. The smallness of the screen in character
mode has until now prevented experimentation
with gradient attraction, which may play a role in
food detection, and with vertical migrations. In
the Ligurian Sea, however, and probably in the
whole Mediterranean Sea, S. fusiformis does not
seem to undertake vertical migrations (Laval et
al., 1992). '

The hardware limitations in character mode (a
position represented by one character on the
screen) impose a too severe constraint on the
space available. These limitations should disap-
pear in pixel mode. This mode, besides another
video board and more memory, requires only a
few changes in the software, owing to the object-
oriented design. In pixel mode, the effect of food
patches could be freely investigated because the
bulk of the population would not have enough
time to reach the screen edges.

The efficiency of Tunicates in exploiting their
food resource is the result of a long evolution
which has tuned some key parameters to their
present ranges of values. The most important
parameters are presumably those governing the
timing of the different phases of the life cycle, the
number of chain generations, the number of ag-
gregates in a chain.

In the CALIFE software an attempt has been
made to simulate the effect of these key parame-
ters. If the model is capable of reproducing the
blooming of Tunicates, it would be possible to
experiment with different values, and to under-
stand how successful strategies developed.

Andersen and Nival (1986) and Braconnot et
al. (1988) used differential equations to model
the development of salp blooms. In these proce-
dural programs, the flow of control affects glob-
ally the data, and equations are applied step by
step, in a sequential manner. The deterministic
nature of the method precludes the appearance
of variability in the results. Ménard et al. (1994)
fitted a Markov regression model to ordinal time
series of observations. Here transition probabili-
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ties allow some variability, as well as dependence
from previous (global) states of the population.
The CALIFE object-oriented software goes fur-
ther to express natural variability, because it han-
dles entities concurrently, with control local to
each entity; these entities modify independently
their own state according to their age, the level of
their reserves, the interactions with the other
organisms. Considering that sources of variability
were kept minimal, this program once further
developed, could presumably account for non-lin-
ear effects impossible to formalize in manageable
equations.

In CALIFE, artificial organisms ‘“bloom” sim-
ply because they reproduce exponentially in areas
where food is present, and starve when they are
away from food. This may be contrasted with
artificial ecologies where organisms stick together
because they cooperate in the exploitation of a
food resource (Assad and Packard, 1992). No
such cooperation is likely to be present in rela-
tively primitive organisms such as Tunicates. If
there is no active cooperation between individu-
als, then the bloom size is at most the size of the
food patch plus the mean horizontal distance a
zooid and its descendants may travel using the
reserves acquired in the patch. The CALIFE
simulation indicates that if the food distribution
is tight, the bloom may not extend very far from
the food source.

In CALIFE, food is not a renewable resource.
If it were, there would be no constraint for the
Tunicate exponential growth. However, this is
only a time scale problem: in the ocean, the
abundance of food shows a marked seasonality.
For a simulation over a longer period of time, it
should be possible to make Salp_Food an “ac-
tive” object, that is an object driven by a task.
The Inquire_Food function will then take a Cur-
rent_Time parameter besides its At_Position pa-
rameter. The food object will then have a dynam-
ical behaviour, with food levels updated accord-
ing to, for example, a phytoplankton growth func-
tion.

In the currently highly simplified representa-
tion of a Tunicate bloom, reproduction, as well as
other metabolic activities, is not represented by
its true cost: the production of more aggregates

per chain should be dependent of the accumula-
tion of more reserves. In the present version of
the software, the number of aggregates per chains
is arbitrarily fixed for the course of a simulation.
The longevity of oozooids and chains, as well as
the other life cycle parameters (see Table 1) are
also constant for a given simulation. This was
done in order to clearly understand the sources
of variability.

The next step will be to improve the represen-
tation of the physiology of the artificial salps. To
arrive at an energy budget, these artificial organ-
isms should not only simulate swimming, but also
respiration and growth, with the corresponding
metabolic costs. The initial reserves of the
progeny should also depend on the ‘“health” of
the parent at the time of reproduction. The num-
ber of chain generations obviously depends on
the reserves accumulated, but also on the age of
the 0oozooid. The longevity presents the same sort
of problem. It is presently fixed in the software,
but it should better depend on the balance be-
tween metabolic losses (respiration, cost of swim-
ming, cost of reproduction) and gains (by feeding),
with a genetic limit. A starved zooid should die
not only because it is too old and cannot repro-
duce (as is presently the case), but because it
cannot compensate its metabolic losses.

It is certainly possible to further refine the
simulation, but it should be remembered that “a
model is not reality, but something that imitates
reality at a certain scale” (Morrison, 1991, p. 5).

Interactions with other artificial species would
be the next achievement. This would permit the
simulation of predator-prey, or parasite—host in-
teractions, which are so important for the study
of populations. But before undertaking these
highly demanding software works, it was impor-
tant to set the stage for these improvements. The
CALIFE design now contains all the required
basic items.
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