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Abstract

This paper stresses the importance of software engineering techniques for ecological modeling. The “object”
paradigm has changed the way ecologists now view computer modeling, but the power and flexibility of the object
approach call for a rigorous methodology. The interest of the HOOD method (first developed for the space industry)
is shown on an ecological example, which uses Artificial Life techniques to simulate the development of a Tunicate

bloom.
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1. Introduction

Ecology is the study of complex biological sys-
tems in relation to the environment. Software
engineering is the management of complex ar-
rangements of pieces of software in order to
model an application domain. Because of the
rapid increase in performance of hardware, and
of the flexibility of new computer languages, soft-
ware engineers designing more and more de-
manding applications have been readily con-
fronted with complexity. What has been called
the “software crisis” has led to the development
of methods aimed at managing complexity (Booch,
1991). These methods were necessary considering
that, for example, the on-board software for a

* Corresponding author.

space shuttle comprises 500 000 lines of code, and
1700000 for the on-ground environment (Myers,
1988). In the ecological domain, where the under-
lying structures are in most cases probably more
complex than the ones found in a space shuttle,
the tendency has first been to drastically simplify
the real world, hoping that it would then be
amenable to a mathematical analysis. There is
some justification to searching for simple expla-
nations, and trying to include in a model every
component of a system may quickly lead to ob-
scurity (Berryman, 1993). However, more and
more voices are now pointing out that complex
systems are of another order than complicated
systems (see for example Jgrgensen et al., 1992).
In dealing with complex models, ecological mod-
elers may profit from software engineering
methodologies: in this discipline methods now
exist which permit us to abstract the main proper-
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ties of a system, to decompose a system in subsys-
tems, or to find the key components at a given
level of organization. Of course the major differ-
ence between software engincering and ecologi-
cal modeling is that in the latter case the organi-
zation, and sometimes even the composition of
the real world is largely unknown. In both areas,
however, there is a need to order structural or
functional complexity. This need has been suc-
cessfully answered in some large recent software
projects.

Drawing a parallel between the modeling ac-
tivity of software engineers and ecologists, this
article will first stress out the importance of the
“object revolution”, and will point up the interest
of a hierarchical decomposition for breaking down
ecological models. In contrast to the object-ori-
ented approach using inheritance which is fre-
quently utilized, an object-based approach using
the Ada language will be advocated to lay the
foundations of well-structured ecological models.
An application of the HOOD method to design a
simulation of the development of a Tunicate
bloom will be presented, using self-reproducing
concurrent individuals to yield an individual-based
simulation.

2. Software engineering methods and ecological
modeling

One of the prominent trends of modern soft-
ware engineering is the move toward an object-
oriented approach. The advantages of object-ori-
ented modeling have been recently emphasized
by ecologists (Saarenmaa et al., 1988; Lhotka,
1991; Sequeira et al., 1991, Sequeira et al., 1993;
Baveco and Lingeman, 1992; Liu, 1993; Makela
et al., 1993; Maley and Caswell, 1993; Silvert,
1993). The change from a functional approach
(i.e. equation-based models easily expressed in
FORTRAN) to an object-oriented approach is a
cultural revolution, which now strikes ecologists
in the same manner than it stroke software engi-
neers some years ago. This change of paradigm
may appear superficially as a computer language
choice. The language is, of course, only a means
to express some concepts. However, if the lan-

guage is not expressive enough, some concepts
cannot be expressed at all. There is now a general
agreement in the software community that
object-oriented methods provide a better way to
model a real domain.

3. Object-oriented design

Earlier methods of software design, such as
SA/SD (Yourdon and Constantine, 1978; De-
Marco, 1979) or JSD (Jackson, 1983), were cen-
tered upon a functional decomposition of the
domain. They used concepts somewhat familiar
to ecologists, like data flow diagrams or state
transition diagrams. They were not formally used
for designing ecological models because these
models were hardly complicated enough. With
the advent of object-oriented models, where real
world entities or conceptual entities are repre-
sented by “objects”, a methodology is indispens-
able to properly organize numerous objects and
their relationships.

Several text-books have been published on ob-
ject-oriented methodologies (Shlaer and Mellor,
1988,1992; Wirfs-Brock et al., 1990; Booch, 1991;
Coad and Yourdon, 1991; Rumbaugh et al., 1991).
A comparison of a great number of object-ori-
ented methods can be found in de Champeaux
and Faure (1992). A more fundamental frame-
work is established by Batory and O’Malley
(1992); they stress the power of hierarchical lay-
ered design for modeling complex systems, and
state (p. 381) “Astonishingly, the idea of strati-
fied designs and layered system is virtually absent
in contemporary object-oriented literature”.
However, these principles form the basis of the
HOOD method.

4. The HOOD method

HOOD (Hierarchical Object-Oriented Design)
is the standard European Space Agency method
for large software developments. It is based on a
formalization of methods expressed in Seidewitz
and Stark (1987) or Bailin (1989). The advantages
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of this method for ecological modeling are three-
fold:

(1) The HOOD decomposition starts from a
global, abstract view of the whole system (the
“root object”), which is broken down into compo-
nent objects, which are in turn decomposed until
“terminal objects” are found. This top-down de-
composition is known to be a convenient way to
disclose complex structures (Rasmussen, 1985).

(2) HOOD produces structures which can be
easily expressed in Ada. The Ada language is
appealing to ecological modelers (Murray, 1990).
Besides its powerful and rigorous potentialities
for numeric calculations (greatly superior to
FORTRAN), Ada is designed around sound soft-
ware engineering principles, including object-
based features and built-in concurrency. It is safer
than C+ + (Reed and Wyant, 1992; Jgrgensen,
1993).

(3) HOOD diagrams are designed for convey-
ing the structure of a complex system during the
specification phase, at any level of organization,
in a way understandable both to the programmers
and the contractor. These diagrams are therefore
helpful for displaying an ecological model with
little references to a programming language.

5. Object-oriented and object-based modelling

In its present form, Ada does not include
inheritance, so that it is object-based rather than
object-oriented (Chin and Chanson, 1991). Inher-
itance was not incorporated in Ada because at
the time of its first normalization (1983) this
concept was not thoroughly explored, and it was
anticipated that it may lead to misuses. Now after
long debates, the next major revision of Ada,
presently known as Ada 9X (Barnes, 1993) will
include only a controlled form of inheritance
(“programming by extension”). This is because
an indiscriminate use of inheritance may rapidly
lead to unsurmountable problems in designing
large systems. “True” object-oriented methods
(i.e. using inheritance, like the method of Rum-
baugh et al., 1991) induce designs built upon an
entity-relationship model. This is not the case for
the Booch (1991) method or the HOOD method.

/ MODELER \
Simulate_Bloom } ffffffffffffffffff L

SIMULATION_INSTRUMENTS)

COMPUTER_INTERFACE

Fig. 1. Simplified HOOD decomposition diagram of the root
object, Modeler. The operation Simulate _ Bloom in the inter-
face box on the left edge triggers an Operation Control
Structure with the same name (as indicated by the broken
arrow). This OPCS acts upon 5 child objects. An arrow
directed from a child object, for example Simulation _ Instru-
ments, to another child object like Tunicates, indicates that
the latter uses the former. Data flows and exception omitted,
as well as the environment objects (utilities).

An illuminating discussion of the implications of
inheritance may be found in Rosen (1992). This
analysis shows the advantages of an object-based
decomposition for designing complex systems. An
object-based hierarchical design is appropriate
for setting up the foundations of a robust ecologi-
cal model, which may be safely augmented when
additional knowledge is available.

6. Outline of the HOOD method

The HOOD Reference Manual (Delatte et al.,
1993) gives a rather formal view of the method, in
the form of definitions and rules destined to be
implemented in software tools. A more practical
exposition may be found in Lai (1991). An expla-
nation of a few terms may be helpful for the
remaining of this article.

In a HOOD diagram like the one in Fig. 1, an
object at level n is represented by a named
rectangle with rounded corners. This object fur-
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nishes a number of services (or operations),
through an interface drawn as a box on the left
edge of the diagram. These operations are imple-
mented at level n + 1 by a small number of child
objects, included in the parent object. Objects are
passive (they execute sequentially their opera-
tions) or active (the operation they execute de-
pends on their internal state). The operations of
passive objects are coded in an Operation Con-
trol Structure (OPCS), while the operations of
active ones are mediated through an Object Con-
trol Structure (OBCS). In a parent object includ-
ing the child objects A and B, “B uses A” is
depicted in the diagram by an arrow flowing from
A to B. In the corresponding Ada code, the
parent object package is “with Object _A, Ob-
ject_B;”, and Object_B (which is “with
Object _A;”’) may request Object_A.Opera-
tion_2, in doted notation. Operations are imple-
mented by Ada procedures, functions or task
entries. An OPCS is represented by a rounded
rectangle without interface box, and is imple-
mented by the body of a procedure or function.
An OBCS is implemented by an OBCS package
encapsulating a task.

A HOOD decomposition begins by determin-
ing the top level object of the model. This root
object must capture an abstract view of the whole
model. This step may superficially appear trivial,
but is in fact very difficult. The later a missing
object is re-introduced in a HOOD diagram, the
costlier the consequences. This may lead to a
complete redesign (and recoding) of the model.
Once identified, the operations at the parent
level are implemented by operations in child ob-
jects included in the parent. This child objects
will be similarly decomposed at the next design
level. This process continues until no further chil-
dren are necessary, in which case a “terminal
object” has been reached. Up to six levels of
decomposition may be necessary to organize and
document large software systems which may com-
prise more than 100 objects. For smaller systems,
two to four levels are usually sufficient. The power
of the method for describing an ecosystem may
be appreciated if one considers that each level
constitutes an ‘“‘abstract machine”, the details of
which will be found in further levels.

Drawing the diagram of the root object is only
possible after a domain analysis. What essential
entities should pertain to our abstraction of the
reality, keeping in mind that their relations with
each other should be fully understood? This is
not a straightforward task. The reader is referred
to the above-cited literature, where cues can be
found on how to find “good” objects and how to
interface them; papers by Colbert (1989), Ladden
(1989), Whitcomb and Clark (1989), Freitas et al.
(1990), and Walters (1991) may also be useful in
an object-based context. With HOOD, the Ada
compiler greatly helps in detecting inconsisten-
cies, because HOOD objects correspond to Ada
packages, so that the compiler checks the “visibil-
ity”” of every name in the parent-child hierarchy.
Several CASE (Computer-Aided Software Engi-
neering) tools are available, which may assist the
designer in drawing interactively the diagrams,
and in writing Ada code skeletons from the speci-
fications.

7. An ecological example: The development of a
Tunicate bloom

An individual-based model should be a con-
current model, where each individual behaves
autonomously. Among all object languages, Ada
provides the best model of concurrency (Burns et
al., 1987; Shumate, 1988). Ada tasks can be suc-
cessfully used to add a concurrent behavioral
component to the structure of every individual
(Laval, 1995). This paper shows how an artificial
individual may behave autonomously, and trans-
mit its structure to its offspring. The flexibility of
the process is best viewed with animals having a
complicated life cycle, like the salps.

Salps are pelagic oceanic Tunicates presenting
an alternance of sexual and asexual reproduction
(Alldredge and Madin, 1982). The individual is-
sued from the egg is called an oozooid. This
oozooid grows and develops a stolon, which, by
asexual reproduction (segmentation), forms a
chain of similar individuals, named blastozooids
or aggregates. The blastozooids remain attached
together by the tunic, their external envelop, so
that the whole chain moves in the water. In the
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chain, each blastozooid matures and becomes first
a female, and then a male. When female, they
can be fertilized and produce an egg, which will
develop into an oozooid. The potential of this
reproductive cycle is apparent if one considers
that an oozooid of Salpa fusiformis, a common
species, gives birth to a chain of more than 100
blastozooids; each of these blastozooids will pro-
duce about 100 oozooids. After only 4 genera-
tions, assuming no mortality, 100* (one hundred
millions) individuals may be produced. An
oozooid produces a chain in 6 to 9 days, and the
oozooids appear after 8 to 10 days (Braconnot et
al., 1988). Moreover, an oozooid yields about 3
chains during its life. This explains why Tunicates
may cover hundreds of km? of the sea (Fraser,
1961; Foxton, 1966; Berner, 1967, Madhupratap
et al., 1980).

The ecological importance of Tunicates in the
pelagic food chain is a motivation to model their
explosive development (Andersen and Nival,
1986; Braconnot et al., 1988; Ménard et al., 1993).
Here a simulation of the development of a Tuni-
cate bloom will be undertaken along the lines of
the HOOD methodology.

7.1. The root object and its decomposition

Simulating the development of a Tunicate
bloom may be seen from two points of view. A
“classical” modeling gives an active role to the
modeler, which sets everything in the model in a
deterministic way. This is a functional approach.
In an object-oriented point of view, it is necessary
to consider more autonomous entities. There is,
of course, a modeler, but there are also some
instruments needed for the simulation, like a
clock; and there is the Tunicate population. In a
more extensive model, other essential entities
should naturally be taken into account: a nutrient
pool, some phytoplanktonic or picoplanktonic
species used as food by the Tunicates, a para-
sitoid eating the Tunicates, and so on. But one
biological entity and the objects needed to carry
the simulation are sufficient to give the main
lines of a HOOD decomposition. This design is
translated into an Ada program named CALIFE
(Computational Artificial LIFE). The source code

of the program is available upon request from the
author. In CALIFE, the modeler does not act
upon the Tunicate population (except for creat-
ing an initial oozooid). At the onset of the pro-
gram, the modeler triggers a clock, and lets the
Tunicate population grow. At the end of the
simulation duration, the Tunicates stop (so they
should have visibility over the simulation clock).
The modeler is only allowed to trace the final
state of each Tunicate back to the first oozooid,
and to count the number of oozooids or blasto-
zooids born, how many died, etc. That is, the
modeler is an observer of the simulation. After
many preliminary design drafts, the root object of
the HOOD decomposition appeared to be best
expressed by a Modeler object, representing an
ecologist doing a simulation of the development
of a population of artificial Tunicates. These au-
tonomous self-reproducing artificial Tunicates are
programmed with Ada tasks (Laval, 1995).

The artificial Tunicates are made of computer
memory cells, shaped by Ada strong typing rules
in order to mimic the reproductive pattern of real
Tunicates. These creatures move in the video
memory, which has the side effect of making
them visible on the computer display. Their
movements occur in some abstract Space object,
but because this is a laboratory simulation, this
object must map to a physical device. To comply
with the constraints of this device, there should
be a mediation between the Tunicate movements
and the physical space. This is accomplished in a
Space _Management object (at the further de-
composition level, this object will include a Dis-
play _Buffer object, programmed along the lines
of the Display_Buffer Package of Cohen, 1986,
pp. 788-793).

Besides the Space_Management child object,
the Modeler includes four other child objects: a
Parameters object, a Simulation _Instruments ob-
ject, a Computer _Interface object, and of course
a Tunicates object. These objects realize the sim-
ulation through an OPCS named
Simulate _Bloom (Fig. 1). The Parameters object
sets the parameter types and reads their initial
values in a configuration file. Simulation _Instru-
ments includes a Simulation _Clock and a Zo-
oid _Counter, which is only used when the simu-
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lation is finished, to accumulate the numbers of
zooids and their states. The Computer _Interface
object furnishes some basic services to carry the
simulation on a computer, such as clearing the
screen or hiding the cursor, as well as setting an
introductory screen. The Tunicates object, de-
tailed in Laval (1995), represents the population
issued from the first oozooid.

7.2. The spatial dimension

In the CALIFE program, Tunicate movements
occur inside a rectangular grid, bounded with a
frame. Each Tunicate is represented by one char-
acter, and can move in one of 8 directions. Dif-
ferent characters are used for live 0ozooids, dead
00zooids, live and dead chains. A chain, consti-
tuted by identical blastozooids, is considered as a
single (super)individual because all its component
blastozooids move together, in the same direc-
tion, and perform the same physiological func-
tions. At this granularity, representing every blas-
tozooid would needlessly complicate the pro-
gram. Tunicate movements are not random, but
rather use an elaborated algorithm for simulating
the spiral swimming of real Tunicates, and for
changing the swimming direction in case of colli-
sion. Cadavers, which are an important ecological
category (their decay transfers organic matter to
other trophic levels), remain active until complete
decomposition. A cadaver ceases to swim, but
“falls” slowly downward the screen bottom. When
completely decomposed, their display is erased.

At the design level, the important point is how
to manage the space? Tunicates have no global
spatial knowledge: they only know that a position
is occupied when they bump into something. How
does a real Tunicate know that there is an obsta-
cle at the position of its next move, and reverse
its swimming direction? In the open ocean, obsta-
cles are uncommon, except when the individual
are tightly packed in a dense swarm. However,
this is not true of the personal computer screen,
and we must cope with this situation. In the
program, a Tunicate should not be allowed to
move to an occupied position, so somewhere there
must be a map of the space. In a concurrent
program, a “monitor task” must control the use

of a shared resource, permitting its access only by
mutual exclusion. This approach was tried, but
when several hundred individuals are simultane-
ously active, far too much requests are made to
the monitor, which cannot service them fast
enough, and the program is eventually frozen.
Suppressing the monitor task has, however, only
minor consequences: from time to time two indi-
viduals occupy the same position, so that the
second overwrite the display of the first. But
internally each one updates its position, so that
when they arrive at a non-overlapping position,
they are again distinct. Moreover, the Track_Zo-
oids operation recovers the final position of each
active individual, even if two or more positions
overlap.

7.3. The temporal dimension

The concurrent behavior of the Tunicate indi-
viduals provides a fine control of the temporal
dimension. At the individual level, each individ-
ual possesses its biological clock (Laval, 1995); at
the program level, the simulation relies on a

Table 1
Objects included in the root object Modeler

Objects included

Operations provided

Parameters
Simulation _ Instruments

Display _ Config _ File;
Start _ Clock;

Stop _ Simulation;

f. Simulation_ Is _Over
f. Simulation _ Is_ Complete;
{Increment...}
Display _ Results;

Set_ Frame;

Set _ Position ();
Request _To_ Move ();
Request _To _ Fall ();
Clear ();

f. Next _ Position ();

f. Next _ Direction ();
Clear _ Screen;

Hide _ Cursor;

Recall _ Cursor;

Pause;

Intro _ Screen;

Create ();

Track _ Zooids ();

Space _ Management

Computer _ Interface

Tunicates

f.: function; (): with parameter(s); {...} operation set.



Ph. Laval / Ecological Modelling 82 (1995) 265-276 271

physical clock. Individual clocks start at birth,
and run independently of each other. When the
simulation duration is elapsed, we need a means
to stop, or at least to freeze, the individuals.
According to our design principles, we forbid
ourselves to act upon the individuals. They should
detect by themselves that a stunning external
event happened, preventing them from continu-
ing anything. In the CALIFE program, this is
accomplished by making each individual fre-
quently “poll” the external clock object, checking
out if the simulation is finished. This is analogous
to sensing the environment. In a more sophisti-
cated artificial life program, it would be conceiv-
able that each individual be provided with a kind
of “nervous system” (implemented by an Ada
task nested within the general behavioral task of
each individual).

7.4. Further levels of hierarchical decomposition

The five child objects issued from the root
object decomposition are shown in Fig. 1. The
Table 1 shows their provided operations. The
Simulate _Bloom object in Fig. 1 is an OPCS
controlling the actions of the child objects. The
Parameters object is a terminal object. Reading a
configuration file is part of its initialization, so
that this operation is not shown in Table 1.

The configuration file is an ordinary ASCII
file. This allows change in the initial parameters
values with a simple text editor, without recompil-
ing the program. The Parameters object provides
most of the values, or initial values, of the vari-
ables used in the simulation, like the simulation
duration, the number of blastozooids per chain,
etc.

The Simulation Instruments object provides
two kinds of services, implemented by two child
objects, Simulation Clock and Zooid _Counter.
The first of these objects gives access to the
services of the simulation clock. The operation
Start _Clock is used by Modeler at the beginning
of the simulation. The clock has visibility over the
Simulation _Duration parameter, so that it stops
when this amount of time is elapsed. Each Tuni-
cate inquires the selector Simulation Is_Over
and stops immediately with the clock. If the Tuni-

cate bloom has consumed all the available com-
puter memory by reproducing without restraint,
the first Tunicate experiencing lack of material
calls Stop_ Simulation, which sets Simula-
tion_Is_Over to True. The selector Simula-
tion _Is _Complete returns True when the simula-
tion is finished and there are no more reproduc-
ing Tunicates, so that Modeler can safely use the
Track Zooids operation. The other operations of
Simulation _Instruments are implemented in the
child object Zooid _Counter. The operation
marked {Increment...} is an operation set (a writ-
ing facility standing for several akin operations).
These operations increment different counters
for the zooid categories (new 00zooids created,
new chains, oozooid cadavers, etc.). The Dis-
play _Results operations reads the counters, and
also the clock status.

The operations implemented by the Com-
puter _Interface object (Table 1) are accom-
plished by several “utility”’ objects drawn from a
pre-existing library, except for the Intro_Screen
operation. Several utility packages are taken from
Jones (1989). The Intro_Screen procedure is an
application-dependent routine displaying an in-
troductory screen with the program name and
version number.

In the Tunicate object, the Create operation
spawns the first oozooid at a place, and with an
initial swimming direction, defined in the config-
uration file. The Track Zooids operation follows
all zooid pointers, starting from the first oozooid
created, incrementing in passing the correspond-
ing counters. The Tunicates object is a terminal
passive object, but is rather particular. It has a
self-reproducing Zooid _Type component (in two
alternating incarnations, an 0o0zooid generation
and a chain generation). In HOOD, the closest
representation of a set of objects is a class (imple-
mented by a generic package). The Tunicates
object does not need to be generic (it has no
parameters); it recursively produces active in-
stances of its Zooid _Type pattern. Each instance
of the Zooid Type possesses an internal Ada
task, responsible for the zooid behavior. This
behavior is presently limited to ageing (and dying),
moving, and reproducing (Laval, 1995). Feeding,
respirating, excreting, and growing, which are op-



272 Ph. Laval / Ecological Modelling 82 (1995) 265-276

A

G 0 03

0 30
000

Time: 21

(B)

0 00300000000 00$0OSSSOSS o] o] 00
$0S00 00S000S0S0 00000 $ 000 03 o]
0 00 O 00 $30 O€I 000S0I0 000 s
Ny $008008000080000 0% 0 300 O o3
(cle] 00 0330 § 03083 00 O @O0 3 O
§ 000 0 00 @OSS000SCO § SO0 0000 O
o0 $0 0 0$ 00SOSOROOSO $80OS§8500€ O N
N $O S0 308 SEO 0000300030 § 0300 O
o] o ®0 $0S000000 $03000I0000S0 030t o]
0O O I $§ $30 SOS000I0OC0SOSOROO00SISS oy 8
0 0 O OOX00000003I000000000 O 00 O 00 0 © 3
o $035000000003 $00000R0RO00S0000S0O
s 00 § $SO0SOESOSSO00SORO00SO000sS 00 O
3 o] $0000080008 SHOOROSOSO00SO 008S O os
OOIH $003I0 OROOOCEO 000 O3O00S0RY O O
) 0$ 030300000000 $00E€ 00 3000000000000 ) 3
0os S 0$ 0$0000003000§SSO000 CO00SS000SS0OSO O OO
¢} T $S$000R00S00000000 XSOOOOHOO 00 30 o]
00S0000S0R0C000S00 0I0000I000 0SIO00SIRIOO
$  SO$30 000§ O000O0000SCOI @ORO0 03000 8
0 00 00 @OOOSHOSSOSOOSOHO 00S000 @000000S

% Press Return to continue X OVER Time: 6@

Fig. 2. Two stages of a simulation, as they are displayed on the computer screen. The initial parameters correspond to those used in
fig. 5 of Braconnot et al., 1988, except that there are only 8 blastozooids per chain. Live oozooids are represented by the character
“0”, oozooid cadavers by * XX 7, live chains by “§”, and chain cadavers by “@”. In (A), after 21 time units (days; seconds for the
simulation), the first 0ozooid has emitted 3 chains and is decomposing; the first chain has emitted its 8 oozooids. In (B), the time
allowed to complete the simulation (60 units) is elapsed; oozooids seem to dominate because a chain (composed of 8 blastozooids)
is represented by just one character. On the computer screen, oozooids and chains are displayed with contrasting colors.
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erations with far-reaching consequences, will be
included in a next version.

8. Output of the program

In its present state (version 3.40), the CALIFE
program is principally a robust framework useful
for testing the overall design. The Tunicate popu-
lation increase is still unlimited. This was at first
necessary in order to ascertain that the program
could recover gracefully if the population growth
exceeded the memory limitations. The output of
the program is as follows:

— The initial parameters values are first dis-
played so that they may be checked before
launching the simulation.

— The initial oozooid appears as an “O” char-
acter on the screen, which begins to move. When
its first maturation duration is elapsed, the “O”
spawns a “§”, symbolizing a chain, which begins
to move, in a direction differing by 1/8 from that
of the oozooid. Other chains may be emitted at
intervals, according to the parameter values. Af-
ter a maturation time, a chain emits n oozooids
(n is a parameter), because the chain symbol
stands for n blastozooids (Fig. 2). Each oozooid
and each chain are emitted after a random inter-
val (0 to 200 milliseconds), in order to desynchro-
nize the zooid movements on the screen (and to
not submerge the task scheduler with a massive
arrival of requests). When an oozooid or a chain
has attained its longevity parameter, it passes to
the cadaver state (the symbol changes from “0O”
or “§”, to “Ld” or “@”) and moves only verti-
cally downward. If a cadaver reaches the lower
frame edge and is not totally decomposed, it
symbol is cleared but the Ada task continues to
exist. When a cadaver is totally decomposed, the
corresponding task is “completed”, but a pointer
linking its structure to the one of its parent still
exist, so that, starting from the pointer on the
first oozooid, the Track_Zooids operation can
recursively visit the final state of all created
zooids. The end of the simulation occurs when
either the predefined time is elapsed, or a “NOT
ENOUGH MEMORY TO CONTINUE” mes-
sage appears on the screen.

— Pressing a key then displays the zooid counts,
together with a recall of the initial parameters
values. The final status (FINISHED or OUT OF
MEMORY) and the clock value are also dis-
played.

— The symbols and (X,Y) coordinates of all the
zooids present on the screen at the end of the
simulation are recorded in an ASCII file.

9. Computer implementation and performances

The CALIFE program was developed with an
Alsys 386-DOS Ada compiler and environment
on a 80386 (20 MHz) micro-computer. The whole
program (version 3.40) represents about 3000 lines
of Ada (including 1200 lines of comments), dis-
tributed in 35 compilation units. The utility li-
braries, representing about 2000 lines of code,
are not included in this total. When more than
about 250 zooids are concurrently in existence,
their movements begin to be slow, and are greatly
impeded when 500 are present. These figures are
X 4 with a 80486DX processor at 33 MHz and a
video local bus. It should be noted that in charac-
ter mode (24 lines X 80 columns), there are only
1760 positions available on the screen, excluding
the frame. With 6 megabytes of memory, about
1500 zooids may be active without raising Stor-
age _Error (Laval, 1995).

10. Discussion

The apparent simplicity of the root diagram
(Fig. 1) may be misleading. A number of other
designs are possible, and indeed may be followed,
resulting in working programs. During the long
elaboration of this model, however, the parsimo-
nious solution shown in Fig. 1 was attained only
after laboriously eliminating several neediessly
more complicated designs.

The object context was found very helpful when
making design decisions, because the ecological
problem space was closely mapped to the Ada
language solution space. A question such as
Should the Tunicates object be “with
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Space _Management;” is answered by examining
directly the corresponding ecological problem.

The HOOD method imposes very constraining
conditions, in contrast with others more “object-
oriented” methods, where numerous kinds of re-
lationships between objects may be expressed.
This flexibility could appear at first an advantage,
but finds its limits when the project gets bigger.
HOOD was not at first founded on Ada just by
accident. It was often stated that Ada is not “just
another language”. Ada is inseparable from soft-
ware engineering, and is a very powerful lan-
guage. This is not to say that, in other contexts,
languages like C+ +, Smalltalk, or Lisp, may not
be more appropriate. Ada has drawbacks also for
modelers; for example, it is not easy to write
quick exploratory models in Ada. In fact, Ada
was designed to prevent this: Ada is a language
primarily directed toward large, long-lasting pro-
jects for which there are safety or mission-critical
constraints. But it has such possibilities that it is
slowly becoming used in others areas. Readers
interested in a general presentation of the Ada
language may be referred to classical text-books
such as Young (1984), Cohen (1986), Booch (1987)
or Barnes (1989).

In CALIFE, the movements of Tunicates are
restrained by the small computer screen. An in-
teresting alternative would be to make the Tuni-
cates move in a virtual, unlimited space, where
collisions are unlikely; this can be done, but there
would be nothing to display in real-time. For the
first phase of the program development, it was
crucial to visualize what was happening. More-
over, the limitations of the present version lie
mainly in the use of characters to represent the
individuals, offering a mere 25 X 80 space. A new
version using pixels of different colors instead of
characters is under development. It will permit at
least the representation of a 640 X 480 space on
common VGA video systems, and up to 1280 X
1024 with high-end graphics boards. The VGA
resolution seems already large enough to not
constrain the Tunicates movements.

The role of time in the CALIFE simulation is
somewhat ambiguous. On one hand, the internal
clock of each zooid governs their swimming
movements (one move each second), and on an-

other hand, biological events such as the first
chain maturation occur on a different time basis.
Clearly, what is ecologically important is the re-
production time, but it cannot be simulated in
real time, otherwise it would be necessary to wait
a month for the end of a simulation run. To the
extent that all biological events can be propor-
tionally scaled down, there is no hindrance to
make 1 second of simulation correspond to, say, 1
day of biological time. As the Tunicate move-
ments are not the purpose of the simulation, it is
possible to state that 1 second on the screen
represents, say, the average positions of 1 day
movements.

This model is ultimately individual-based, be-
cause the Tunicates object makes use of an Arti-
ficial life approach. However, this is not inherent
to the HOOD methodology. The limitation of the
number of concurrent individuals, due to the Ada
runtime scheduler, may be overcome using tech-
niques such as the one of Rose et al., 1993.

11. Conclusion

The software design presented here should
provide a robust starting basis for developing
similar ecological simulations. Tunicates were
chosen because their complicated life cycle pre-
sented a programming challenge; organisms with
a simpler reproductive strategy should be easier
to implement. Other ecosystem components may
be added provided that their hierarchical level is
correctly identified. With the Tunicates, a more
realistic simulation would require to limit the
exponential population growth. This may be done
via several paths: introducing food in the spatial
environment (augmenting the behavior of each
Tunicate with a Eat procedure), and /or structur-
ing the space in more or less advantageous or
harmful areas, or introducing predators, parasites
or parasitoids. A Eat procedure lends itself to the
application of an assimilation coefficient, which
regulates the age of first maturation of the off-
spring, the number of blastozooids per chain, and
so on. The food could be phytoplanktonic or
bacterial populations, with their own reproduc-
tion rate. It is easy to see that the degree of
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model refinement may go as far as our knowledge
(or supposed knowledge) of the ecosystem. The
art of the ecological modeler consists of choosing
what is deemed important; the interest of the
software is to allow the incorporation of this
knowledge in a well integrated way, permitting
one to observe the outcome. It is in the disci-
plined hierarchical arrangement of the objects
constituting the real world complexity that a
methodology such as HOOD may be helpful to
the ecological modeler.
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